Skip to main content
Log in

Almost Output Synchronization for Multi-agent Systems with Non-identical Agents Under Time-Varying Topologies

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

The synchronization problem of multi-agent systems with non-identical general agents under time-varying topologies and in the presence of external disturbances has not been solved for the introspective agents, i.e., agents have access to parts of their own states. This paper aims to tackle this problem. It is assumed that the time-varying topology switches among a certain amount of topologies with any a priori given dwell time and each topology contains a directed spanning tree. This paper proposes a family of distributed protocols for each agent only using relative information from its neighboring agents and some of its own states, such that synchronization can be achieved among agents while the effect of disturbances with finite power on the norm of all agents’ output disagreement can be suppressed as much as possible. It should be emphasized that agents’ controller states are exempted from the protocol design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bai, H., Arcak, M., & Wen, J. (2011). Cooperative control design: A systematic, passivity-based approach. Springer.

    Book  MATH  Google Scholar 

  • Bernardo, M., Salvi, A., & Santini, S. (2015). Distributed consensus strategy for platooning of vehicles in the presence of time-varying heterogeneous communication delays. IEEE Transactions on Intelligent Transportation Systems, 16(1), 102–112.

    Article  Google Scholar 

  • Cheng, F., Yu, W., Wan, Y., & Cao, J. (2016). Distributed robust control for linear multiagent systems with intermittent communications. IEEE Transactions on Circuits and Systems, 63(9), 838–842.

    Google Scholar 

  • Ding, L., Han, Q., Ge, X., & Zhang, X. (2018). An overview of recent advances in event-triggered consensus of multi-agent systems. IEEE Transactions on Cybernetics, 48(4), 1110–1123.

    Article  Google Scholar 

  • Godsi, C., & Royle, G. (2001). Algebraic graph theory (Vol. 207). Springer.

    Book  Google Scholar 

  • Grip, H. F., Saberi, A. & Stoorvogel, A. A. (2014). Output synchronization for networks of minimum-phase, non-introspective agents without exchange of controller states: Homogeneous, heterogeneous, and nonlinear. In American control conference. Portland. OR.

  • Grip, H. F., Yang, T., Saberi, A., & Stoorvogel, A. A. (2012). Output synchronization for heterogeneous networks of non-introspective agents. Automatica, 48(10), 2444–2453.

    Article  MathSciNet  MATH  Google Scholar 

  • Jaoura, N., Hassan, L., & Alkafri, A. (2022). Distributed consensus problem of multiple non-holonomic mobile robots. Journal of Control, Automation and Electrical Systems, 33, 419–4331.

    Article  Google Scholar 

  • Kim, H., Shim, H., & Seo, J. H. (2011). Output consensus of heterogeneous uncertain linear multi-agent systems. IEEE Transactions on Automatic Control, 56(1), 200–206.

    Article  MathSciNet  MATH  Google Scholar 

  • Liberzon, D., & Morse, A. S. (1999). Basic problem in stability and design of switched systems. IEEE Control Systems Magazine, 19(5), 59–70.

    Article  MATH  Google Scholar 

  • Li, Z., Duan, Z., Chen, G., & Huang, L. (2010). Concensus of multi-agent systems and synchronization of complex networks: A unified viewpoint. IEEE Transaction on Circuit and System I: Regular Papers, 57(1), 213–224.

    Google Scholar 

  • Li, Z., Duan, Z., & Lewis, F. (2014). Distributed robust consensus control of multi-agent systems with heterogeneous matching uncertainties. Automatica, 50(3), 883–889.

    Article  MathSciNet  MATH  Google Scholar 

  • Liu, Z., Zhang, M., Saberi, A., & Stoorvogel, A. A. (2018). State synchronization of multi-agent systems via static or adaptive nonlinear dynamic protocols. Automatica, 9(5), 316–327.

    Article  MathSciNet  MATH  Google Scholar 

  • Li, B., Wen, G., Peng, Z., Huang, T., & Rahmani, A. (2021). Fully distributed consensus tracking of stochastic nonlinear multiagent systems with Markovian switching topologies via intermittent control. IEEE Transactions on Systems, Man, and Cybernetics. https://doi.org/10.1109/TSMC.2021.3063907.

    Article  Google Scholar 

  • Meng, Z., Yang, T., Dimarogonas, D. V. & Johansson, K. H. (2013). Coordinated output regulation of multiple heterogeneous linear systems. In 52nd IEEE conference on decision and control (pp. 2175–2180). Florence, Italy.

  • Panteley, E., & Loria, A. (2017). Synchronization and dynamics consensus of heterogeneous networked systems. IEEE Transactions on Automatic Control, 62(8), 3758–3773.

    Article  MathSciNet  MATH  Google Scholar 

  • Peymani, E., Grip, H. F., Saberi, A., & Fossen, T. (2013). \(\cal{H}_{\infty }\) almost synchronization for homogeneous networks of non-introspective SISO agents under external disturbances. In Proceedings of 52nd CDC (pp. 4012–4017). Florence, Italy.

  • Peymani, E., Grip, H. F., Saberi, A., Wang, X., & Fossen, T. I. (2014). \(h_{\infty }\) almost output synchronization for heterogeneous networks of introspective agents under external disturbances. Automatica, 50(4), 1026–1036.

    Article  MathSciNet  MATH  Google Scholar 

  • Ren, W., & Beard, R. W. (2005). Consensus seeking in multiagent systems under dynamically changing interaction topologies. IEEE Transactions on Automatic Control, 50(5), 655–661.

    Article  MathSciNet  MATH  Google Scholar 

  • Saberi, A., Stoorvogel, A. A., Zhang, M., & Sannuti, P. (2022). Synchronization of multi-agent systems in the presence of disturbances and delays. Birkhäuser.

    Book  MATH  Google Scholar 

  • Sannuti, P., & Saberi, A. (1987). Special coordinate basis for multivariable linear systems: Finite and infinite zero structure, squaring down and decoupling. International Journal of Control, 45(5), 1655–1704.

    Article  MathSciNet  MATH  Google Scholar 

  • Sannuti, P., Saberi, A., & Zhang, M. (2014). Squaring down of general MIMO systems to invertible uniform rank systems via pre- and/or post-compensators. Automatica, 50(8), 2136–2141.

    Article  MathSciNet  MATH  Google Scholar 

  • Shi, G., & Johansson, K. H. (2013). Robust consensus for continuous-time multi-agent dynamics. SIAM Journal on Control and Optimization, 51(5), 3673–3691.

    Article  MathSciNet  MATH  Google Scholar 

  • Tanner, H. G., Jadbabaie, A., & Pappas, G. J. (2007). Flocking in fixed and switching networks Flocking in fixed and switching networks. IEEE Transactions on Automatic Control, 52(5), 863–868.

    Article  MathSciNet  MATH  Google Scholar 

  • Viana, I. B., Santos, D. A. D., & Góes, L. C. S. (2017). Distributed formation flight control of multirotor helicopters. Journal of Control, Automation and Electrical Systems, 28, 502–515.

    Article  Google Scholar 

  • Wang, C., & Ding, Z. (2016). \(h_{\infty }\) consensus control of multi-agent systems with input delay and directed topology. IET Control Theory and Application. https://doi.org/10.1049/iet-cta.2015.0945.

    Article  MathSciNet  Google Scholar 

  • Wang, L., Wen, C., Liu, Z., Su, H., & Cai, J. (2020). Robust cooperative output regulation of heterogeneous uncertain linear multiagent systems with time-varying communication topologies. IEEE Transactions on Automatic Control, 65(10), 4340–4347.

    Article  MathSciNet  MATH  Google Scholar 

  • Xu, X., Liu, L., & Feng, G. (2017). Consensus of heterogeneous linear multi-agent systems with communication time-delays. IEEE Transactions on Cybernetics, 47(8), 1820–1829.

    Article  Google Scholar 

  • Yang, T., Saberi, A., Stoorvogel, A. A., & Grip, H. F. (2014). Output synchronization for heterogeneous networks of introspective right-invertible agents. International Journal of Robust and Nonlinear Control, 24(13), 1821–1844.

    Article  MathSciNet  MATH  Google Scholar 

  • You, X., Hua, C., Li, K., & Jia, X. (2020). Fixed-time leader-following consensus for high-order time-varying nonlinear multi-agent systems. IEEE Transactions on Automatic Control, 65(12), 5510–5516.

    Article  MathSciNet  MATH  Google Scholar 

  • Yu, Z., Jiang, H., & Hu, C. (2018). Second-order consensus for multiagent systems via intermittent sampled data control. IEEE Transactions on Systems, Man, and Cybernetics, 48(11), 1986–2002.

    Article  Google Scholar 

  • Zhang, M., Saberi, A., & Stoorvogel, A. A. (2016). Synchronization for heterogeneous time-varying networks with non-introspective, non-minimum-phase agents in the presence of external disturbances with known frequencies. In Proceedings of 55th CDC (pp. 5201–5206). Las Vegas, NV.

  • Zhang, M., Saberi, A., Stoorvogel, A. A., & Sannuti, P. (2015). Almost regulated output synchronization for heterogeneous time-varying networks of non-introspective agents and without exchange of controller states. In American control conference (pp. 2735–2740). Chicago, IL.

  • Zhang, H., Han, J., Wang, Y., & Jiang, H. (2019). \(h_{\infty }\) consensus for linear heterogeneous multiagent systems based on event-triggered output feedback control scheme. IEEE Transactions on Cybernetics, 49(6), 2268–2279.

    Article  Google Scholar 

  • Zhang, M., Saberi, A., Stoorvogel, A. A., & Liu, Z. (2019). State synchronization of multi-agent systems in the presence of unknown input delays via static protocols. European Journal of Control, 47, 20–29.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, D., Xu, Z., Karimi, H., Wang, Q., & Yu, L. (2018). Distributed \(h_{\infty }\) output-feedback control for consensus of heterogeneous linear multiagent systems with aperiodic sampled-data communications. IEEE Transactions on Industrial Electronics, 65(5), 4145–4155.

    Article  Google Scholar 

  • Zhou, K., & Doyle, J. (1998). Essentials of robust control essentials of robust control. Prentice Hall.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meirong Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Proof of Lemma 1

Proof of Lemma 1

Proof

Let \(n_q\ge \max _{i=1,\ldots ,N}(n_{qi})\). Then, according to Sannuti et al. (2014, Theorem 1), there exists a pre-compensator to make agent \(i\in \{1,\ldots ,N\}\) invertible and of equal rank \(n_{q}\),

$$\begin{aligned} \left\{ \begin{array}{cl} {\dot{x}}_{p,i}^{1}&{}=A_{p,i}^{1}x_{p,i}^{1}+B_{p,i}^{1}u_{i}^{1},\\ {\bar{u}}_{i}&{}=C_{p,i}^{1} x_{p,i}^{1}x_{p,i}^{1}+D_{p,i}^{1}u_{i}^{1} , \end{array}\right. \end{aligned}$$
(1)

where \(u_{i}^{1}\in {\mathbb {R}}^{p}\). Next, we concentrate on transforming different invertible system dynamics of equal rank to almost identical ones.

Let

$$\begin{aligned} {\tilde{x}}_{i}= \begin{pmatrix} {\bar{x}}_{i} \\ x_{p,i}^{1} \end{pmatrix}. \end{aligned}$$

There always exist nonsingular state transformation \(\Gamma _{i,x}\) and input transformation \(\Gamma _{i,u}\), see Sannuti and Saberi (1987), such that

$$\begin{aligned} {\tilde{x}}_{i}=\Gamma _{i,x}x_{i}, \qquad u_{i}^{1}=\Gamma _{i,u}u_{i}^{2}. \end{aligned}$$
(2)

where

$$\begin{aligned} x_{i}:=\begin{pmatrix} x_{i,a} \\ x_{i,d} \end{pmatrix}. \end{aligned}$$

Then, the interconnection of (1) and (1) can be written in the special form,

$$\begin{aligned} \left\{ \begin{array}{cl} {\dot{x}}_{i,a}&{}={\bar{A}}_{i,a}x_{i,a}+{\bar{L}}_{i,a}y_{i}+E_{i,a}{\bar{w}}_i,\\ {\dot{x}}_{i,d}&{}=Ax_{i,d}+B(u_{i}^{2} +D_{i,a}x_{i,a} +D_{i,d}x_{i,d})+E_{i,d}{\bar{w}}_i,\\ y_{i}&{}=Cx_{i,d}, \end{array}\right. \nonumber \\ \end{aligned}$$
(3)

where \(A,\, B,\, C\) are as defined in (6). Note that there is an output injection for the zero dynamics. Therefore, we can have internal stability even if the system is not minimum phase.

Note that the information

$$\begin{aligned} {\bar{z}}_{m,i}:=\begin{pmatrix} z_{m,i} \\ x_{p,i}^{1} \end{pmatrix} \end{aligned}$$

is available for agent i, and \({\bar{z}}_{m,i}\) can be represented in terms of \(x_{i,a},\,x_{i,d}\) as

$$\begin{aligned} {\bar{z}}_{m,i}={\bar{C}}_{m,i}\begin{pmatrix} x_{i,a}\\ x_{i,d}\end{pmatrix},\quad \text {where}\,\,{\bar{C}}_{m,i}=\begin{pmatrix} C_{m,i} &{}0\\ 0&{} I\end{pmatrix}\Gamma _{i,x}. \end{aligned}$$

We define that, for \(i=1,\ldots ,N\),

$$\begin{aligned} {\bar{A}}_{i}=\begin{pmatrix} {\bar{A}}_{i,a} &{} {\bar{L}}_{i,a}C\\ BD_{i,a} &{} A+BD_{i,d}\end{pmatrix},\quad {\bar{B}}_{i}=\begin{pmatrix} 0\\ B\end{pmatrix}. \end{aligned}$$

Assumption 1 implies that \((C_{m,i},\,A_{i})\) is observable, which yields that \(({\bar{C}}_{m,i},\,{\bar{A}}_{i})\) is observable. We then design an observer-based pre-compensator for the system (3) as

$$\begin{aligned} \left\{ \begin{array}{cl} \dot{\hat{{\bar{x}}}}_{i}&{}={\bar{A}}_{i}\hat{{\bar{x}}}_{i} +{\bar{B}}_{i}u_{i}^{2} -{\bar{K}}_{i}({\bar{z}}_{m,i}-{\bar{C}}_{m,i}\hat{{\bar{x}}}_{i}),\\ u_{i}^{2}&{}=\begin{pmatrix} -D_{i,a}\,\,\,&{} R-D_{i,d}\end{pmatrix} \hat{{\bar{x}}}_{i}+Mu_{i}, \end{array}\right. \end{aligned}$$
(4)

where \(u_{i}\in {\mathbb {R}}^{p}\), \({\bar{K}}_{i}\) is chosen such that \({\bar{A}}_{i}+{\bar{K}}_{i}{\bar{C}}_{m,i}\) is Hurwitz stable, R is chosen such that \(A+BR\) has desired eigenvalues in the open left half plane, and M is an arbitrary and non-singular matrix. Define the observer error \({\tilde{x}}_{i}=x_{i}-\hat{{\bar{x}}}_{i}\). Notice that the observer error dynamics is asymptotically stable. Moreover, the effect of \(x_{i,a}\) on the dynamics \(x_{i,d}\) is asymptotically canceled. Thus, the mapping from the new input \(u_{i}\) to the output \(y_{i}\) is given by

$$\begin{aligned} \left\{ \begin{array}{cl} {\dot{x}}_{i,d}&{}=(A + BR)x_{i,d}+B_{d}Mv_{i}+\rho _{i}+E_{i,d}{\bar{w}}_i,\\ y_{i}&{}=C {\bar{x}}_{i,d}, \end{array}\right. \end{aligned}$$
(5)

and the observer error dynamics is written as,

$$\begin{aligned} \left\{ \begin{array}{cl} \dot{{\tilde{x}}}_{i}&{}=({\bar{A}}_{i}+{\bar{K}}_{i}{\bar{C}}_{m,i}){\tilde{x}}_{i}+\begin{pmatrix}E_{i,a}\\ E_{i,d} \end{pmatrix}{\bar{w}}_i,\\ \rho _{i}&{}=B_d\begin{pmatrix} D_{i,a}\,\,\,&{} D_{i,d}-R\end{pmatrix}{\tilde{x}}_{i}. \end{array}\right. \end{aligned}$$
(6)

Then, let \(x_i\) be \(x_{i,d}\), which results in the dynamics in (8). Moreover, \(H_i\), \(E_{o,i}\), and \(W_i\) can be found in (6). \(\square \)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M. Almost Output Synchronization for Multi-agent Systems with Non-identical Agents Under Time-Varying Topologies. J Control Autom Electr Syst 34, 29–39 (2023). https://doi.org/10.1007/s40313-022-00957-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-022-00957-4

Keywords

Navigation