Skip to main content
Log in

Distributed Consensus Problem of Multiple Non-holonomic Mobile Robots

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

In this paper, we propose a new consensus protocol for networks of multiple mobile robots with fixed communication topology using a strategy based on an invariant manifold technique. The agents are subjected to non-holonomic constraints and transformed into Brockett integrator form. The objective is to asymptotically stabilize the non-holonomic model for each agent about a group decision value using distributed protocol. This approach solves the consensus problem in two cases: leader–follower consensus problem when the leader is static and leaderless consensus problem. Then, a design of test-bed is fully described for testing distributed protocols. The setup consists of a group of non-holonomic mobile robots moving on a platform with different ArUco markers on their tops, an overhead camera to determine the poses (positions and orientations) of these markers, and a desktop computer to provide the interaction between the robots. The design of this test-bed has relied on ROS framework as a software platform for offering ROS network architecture a solution for distributed communication. Finally, results were presented to show the performance of this design by applying the proposed protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Antonelli, G., Arrichiello, F., & Chiaverini, S. (2009). Experiments of formation control with multirobot systems using the null-space-based behavioral control. IEEE Transactions on Control Systems Technology, 17(5), 1173–1182.

    Article  Google Scholar 

  • Anvari, I. (2013). Non-holonomic differential drive mobile robot control & design: Critical dynamics and coupling constraints (Doctoral dissertation). Arizona State University.

  • Astolfi, A. (1998). Discontinuous control of the Brockett integrator. European Journal of Control, 4(1), 49–63.

    Article  Google Scholar 

  • Brockett, R. W. (1983). Asymptotic stability and feedback stabilization. Differential Geometric Control Theory, 27(1), 181–191.

    MathSciNet  MATH  Google Scholar 

  • Cao, K., Jiang, B., & Yue, D. (2014). Distributed consensus of multiple nonholonomic mobile robots. IEEE/CAA Journal of Automatica Sinica, 1(2), 162–170.

    Article  Google Scholar 

  • Cortés, J., Martínez, S., & Bullo, F. (2006). Robust rendezvous for mobile autonomous agents via proximity graphs in arbitrary dimensions. IEEE Transactions on Automatic Control, 51(8), 1289–1298.

    Article  MathSciNet  Google Scholar 

  • Cremean, L., Dunbar, W. B., van Gogh, D., Hickey, J., Klavins, E., Meltzer, J., & Murray, R. M. (2002). The Caltech multi-vehicle wireless testbed. In Proceedings of the 41st IEEE conference on decision and control (Vol. 1, pp. 86–88).

  • Davids, A. (2002). Urban search and rescue robots: From tragedy to technology. IEEE Intelligent Systems, 17(2), 81–83.

    Article  Google Scholar 

  • De Luca, A., & Oriolo, G. (1995). Modelling and control of nonholonomic mechanical systems. In Kinematics and dynamics of multi-body systems (pp. 277–342). Vienna: Springer.

  • DeVon, D., & Bretl, T. (2007). Kinematic and dynamic control of a wheeled mobile robot. In 2007 IEEE/RSJ international conference on intelligent robots and systems (pp. 4065–4070). IEEE.

  • Dimarogonas, D. V., & Kyriakopoulos, K. J. (2007). On the rendezvous problem for multiple nonholonomic agents. IEEE Transactions on Automatic Control, 52(5), 916–922.

    Article  MathSciNet  Google Scholar 

  • Indriyanto, T., Rizki, A. R., Hariyadin, M. L., Akbar, M. F., & Syafi, A. A. A. (2020). Centralized swarming UAV using ROS for collaborative missions. In AIP conference proceedings (Vol. 2226, No. 1, p. 030012). AIP Publishing LLC.

  • Jácome, G., Sierra, M., & Cruz, P. J. (2019). A mini-sized agent testbed for applications in mobile robotics. In 2019 IEEE 4th Colombian conference on automatic control (CCAC) (pp. 1–6). IEEE.

  • Joseph, L., & Cacace, J. (2018). Mastering ROS for Robotics Programming: Design, build, and simulate complex robots using the Robot Operating System. Packt Publishing Ltd.

  • Khennouf, H., & De Wit, C. C. (1995). On the construction of stabilizing discontinuous controllers for nonholonomic systems. IFAC Proceedings Volumes, 28(14), 667–672.

    Article  Google Scholar 

  • Lamping, A. P., Ouwerkerk, J. N., & Cohen, K. (2018). Multi-UAV control and supervision with ROS. In 2018 aviation technology, integration, and operations conference (p. 4245).

  • Lei, M., Zhou, S. L., Yang, X. X., & Yin, G. Y. (2012). Complex formation control of large-scale intelligent autonomous vehicles. Mathematical Problems in Engineering, 2012.

  • Li, Z., & Duan, Z. (2017). Cooperative control of multi-agent systems: A consensus region approach. CRC Press.

  • Li, Z., Duan, Z., Chen, G., & Huang, L. (2009). Consensus of multiagent systems and synchronization of complex networks: A unified viewpoint. IEEE Transactions on Circuits and Systems I: Regular Papers, 57(1), 213–224.

    MathSciNet  MATH  Google Scholar 

  • Li, Z., Liu, X., Fu, M., & Xie, L. (2012). Global H consensus of multi-agent systems with Lipschitz non-linear dynamics. IET Control Theory and Applications, 6(13), 2041–2048.

    Article  MathSciNet  Google Scholar 

  • Maghenem, M., Bautista, A., Nuno, E., Loría, A., & Panteley, E. (2018). Consensus of multi-agent systems with nonholonomic restrictions via Lyapunov’s direct method. IEEE Control Systems Letters, 3(2), 344–349.

  • Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C., Klaptocz, A., & Martinoli, A. (2009). The e-puck, a robot designed for education in engineering. In Proceedings of the 9th conference on autonomous robot systems and competitions (Vol. 1, No. CONF, pp. 59–65). IPCB: Instituto Politécnico de Castelo Branco.

  • Olfati-Saber, R., & Murray, R. M. (2004). Consensus problems in networks of agents with switching topology and time-delays. IEEE Transactions on Automatic Control, 49(9), 1520–1533.

    Article  MathSciNet  Google Scholar 

  • Pitzer, B. usb\_cam, http://wiki.ros.org/usb_cam

  • Rehan, M., Jameel, A., & Ahn, C. K. (2017). Distributed consensus control of one-sided Lipschitz nonlinear multiagent systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 48(8), 1297–1308.

  • Rehman, A., Rehan, M., Iqbal, N., & Ahn, C. K. (2018). Toward the LPV approach for adaptive distributed consensus of Lipschitz multi-agents. IEEE Transactions on Circuits and Systems II: Express Briefs, 66(1), 91–95.

    Google Scholar 

  • Ren, W., & Beard, R. W. (2008). Distributed consensus in multi-vehicle cooperative control (Vol. 27, No. 2, pp. 71-82). London: Springer.

  • Ren, W., & Atkins, E. (2007). Distributed multi-vehicle coordinated control via local information exchange. International Journal of Robust and Nonlinear Control: IFAC-Affiliated Journal, 17(10–11), 1002–1033.

    Article  MathSciNet  Google Scholar 

  • Saber, R. O., & Murray, R. M. (2003). Consensus protocols for networks of dynamic agents.

  • Salinas, R. M. (2019). ArUco: An efficient library for detection of planar markers and camera pose estimation.

  • Salinas, R. M. aruco\_ros, https://github.com/pal-robotics/aruco_ros.

  • Tsiotras, P. (1997). Invariant manifold techniques for control of underactuated mechanical systems. In Modelling and control of mechanical systems (pp. 277–292).

  • Verlab Laboratory at Universidade Federal de Minas Gerais. https://github.com/gctronic/epuck_driver_cpp

  • Zhai, G., Takeda, J., Imae, J., & Kobayashi, T. (2010). Towards consensus in networked non-holonomic systems [brief paper]. IET Control Theory and Applications, 4(10), 2212–2218.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nour Jaoura.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaoura, N., Hassan, L. & Alkafri, A. Distributed Consensus Problem of Multiple Non-holonomic Mobile Robots. J Control Autom Electr Syst 33, 419–433 (2022). https://doi.org/10.1007/s40313-021-00791-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-021-00791-0

Keywords

Navigation