Skip to main content
Log in

Drug Dose Selection in Pediatric Obesity: Available Information for the Most Commonly Prescribed Drugs to Children

  • Review Article
  • Published:
Pediatric Drugs Aims and scope Submit manuscript

Abstract

Obesity rates continue to rise in children, and little guidance exists regarding the need for adjustment away from total body weight-based doses for those prescribing drugs to this population of children. A majority of drugs prescribed to children with obesity result in either sub-therapeutic or supra-therapeutic concentrations, placing these children at risk for treatment failure and drug toxicities. In this review, we highlight available obesity-specific pharmacokinetic and dosing information for the most frequently prescribed drugs to children in the inpatient and outpatient clinical settings. We also comment on available dosing recommendations for drugs prescribed to treat common pediatric obesity-related comorbidities. This review highlights that there is no safe or proven ‘rule of thumb,’ for dosing drugs for children with obesity, and a striking lack of pharmacokinetic data to support the creation of dosing guidelines for children with obesity for the most commonly prescribed drugs. It is important that those prescribing for children with obesity are aware of these gaps in knowledge and of potential drug treatment failure or adverse events related to drug toxicity as a result of these knowledge gaps. Until more data are available, we recommend close monitoring of drug response and adverse events in children with obesity receiving commonly prescribed drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. WHO | Report of the Commission on Ending Childhood Obesity. WHO. http://www.who.int/end-childhood-obesity/publications/echo-report/en/. Accessed April 26, 2019.

  2. Defining Childhood Obesity | Overweight & Obesity | CDC. 2019. https://www.cdc.gov/obesity/childhood/defining.html. Accessed June 25, 2019.

  3. Skinner AC, Ravanbakht SN, Skelton JA, Perrin EM, Armstrong SC. Prevalence of obesity and severe obesity in US Children, 1999–2016. Pediatrics. 2018. https://doi.org/10.1542/peds.2017-3459.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Collaborators TG 2015 O. Health effects of overweight and obesity in 195 countries over 25 years. N Engl J Med. 2017;377(1):13–27. https://doi.org/10.1056/nejmoa1614362.

    Article  Google Scholar 

  5. Harskamp-van Ginkel MW, Hill KD, Becker KC, et al. Drug dosing and pharmacokinetics in children with obesity: a systematic review. JAMA Pediatr. 2015;169(7):678–85. https://doi.org/10.1001/jamapediatrics.2015.132.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Rowe S, Siegel D, Benjamin DK. Gaps in drug dosing for obese children: a systematic review of commonly prescribed emergency care medications. Clin Ther. 2015;37(9):1924–32. https://doi.org/10.1016/j.clinthera.2015.08.006.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Callaghan LC. Prescribing in paediatric obesity: methods to improve dosing safety in weight-based dose calculations. Arch Dis Child Educ Pract. 2018. https://doi.org/10.1136/archdischild-2016-311491.

    Article  Google Scholar 

  8. Anderson BJ, Holford NH. What is the best size predictor for dose in the obese child? Paediatr Anaesth. 2017;27(12):1176–84. https://doi.org/10.1111/pan.13272.

    Article  PubMed  Google Scholar 

  9. Kearns GL, Abdel-Rahman SM, Alander SW, Blowey DL, Leeder JS, Kauffman RE. Developmental pharmacology—drug disposition, action, and therapy in infants and children. N Engl J Med. 2003;349(12):1157–67. https://doi.org/10.1056/NEJMra035092.

    Article  CAS  PubMed  Google Scholar 

  10. Kendrick JG, Carr RR, Ensom MHH. Pediatric obesity: pharmacokinetics and implications for drug dosing. Clin Ther. 2015;37(9):1897–923. https://doi.org/10.1016/j.clinthera.2015.05.495.

    Article  CAS  PubMed  Google Scholar 

  11. Sandritter TL, McLaughlin M, Artman M, Lowry J. The interplay between pharmacokinetics and pharmacodynamics. Pediatr Rev. 2017;38(5):195–206. https://doi.org/10.1542/pir.2016-0101.

    Article  PubMed  Google Scholar 

  12. Hanley MJ, Abernethy DR, Greenblatt DJ. Effect of obesity on the pharmacokinetics of drugs in humans. Clin Pharmacokinet. 2010;49(2):71–87. https://doi.org/10.2165/11318100-000000000-00000.

    Article  CAS  PubMed  Google Scholar 

  13. Matson KL, Horton ER, Capino AC, Advocacy Committee for the Pediatric Pharmacy Advocacy Group. Medication dosage in overweight and obese children. J Pediatr Pharmacol Ther. 2017;22(1):81–3. https://doi.org/10.5863/1551-6776-22.1.81.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Natale S, Bradley J, Nguyen WH, et al. Pediatric obesity: pharmacokinetic alterations and effects on antimicrobial dosing. Pharmacotherapy. 2017;37(3):361–78. https://doi.org/10.1002/phar.1899.

    Article  CAS  PubMed  Google Scholar 

  15. Ross EL, Jorgensen J, DeWitt PE, et al. Comparison of 3 body size descriptors in critically Ill obese children and adolescents: implications for medication dosing. J Pediatr Pharmacol Ther. 2014;19(2):103–10. https://doi.org/10.5863/1551-6776-19.2.103.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chai G, Governale L, McMahon AW, Trinidad JP, Staffa J, Murphy D. Trends of outpatient prescription drug utilization in US children, 2002–2010. Pediatrics. 2012;130(1):23–31. https://doi.org/10.1542/peds.2011-2879.

    Article  PubMed  Google Scholar 

  17. Savage VM, Deeds EJ, Fontana W. Sizing up allometric scaling theory. PLoS Comput Biol. 2008;4(9):e1000171. https://doi.org/10.1371/journal.pcbi.1000171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ross EL, Heizer J, Mixon MA, et al. Development of recommendations for dosing of commonly prescribed medications in critically ill obese children. Am J Health Syst Pharm. 2015;72(7):542–56. https://doi.org/10.2146/ajhp140280.

    Article  CAS  PubMed  Google Scholar 

  19. Zheng Y, Liu S-P, Xu B-P, et al. Population pharmacokinetics and dosing optimization of azithromycin in children with community-acquired pneumonia. Antimicrob Agents Chemother. 2018. https://doi.org/10.1128/aac.00686-18.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Moriyama B, Jarosinski PF, Figg WD, et al. Pharmacokinetics of intravenous voriconazole in obese patients: implications of CYP2C19 homozygous poor metabolizer genotype. Pharmacotherapy. 2013;33(3):e19–22. https://doi.org/10.1002/phar.1192.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Cheymol G. Effects of obesity on pharmacokinetics implications for drug therapy. Clin Pharmacokinet. 2000;39(3):215–31. https://doi.org/10.2165/00003088-200039030-00004.

    Article  CAS  PubMed  Google Scholar 

  22. Forbes GB. Nutrition and growth. J Pediatr. 1977;91(1):40–2.

    Article  CAS  Google Scholar 

  23. He Q, Karlberg J. Bmi in childhood and its association with height gain, timing of puberty, and final height. Pediatr Res. 2001;49(2):244–51. https://doi.org/10.1203/00006450-200102000-00019.

    Article  CAS  PubMed  Google Scholar 

  24. Johnson W, Stovitz SD, Choh AC, Czerwinski SA, Towne B, Demerath EW. Patterns of linear growth and skeletal maturation from birth to 18 years of age in overweight young adults. Int J Obes (Lond). 2012;36(4):535–41. https://doi.org/10.1038/ijo.2011.238.

    Article  CAS  Google Scholar 

  25. De Simone M, Farello G, Palumbo M, et al. Growth charts, growth velocity and bone development in childhood obesity. Int J Obes Relat Metab Disord. 1995;19(12):851–7.

    PubMed  Google Scholar 

  26. Vignolo M, Naselli A, Di Battista E, Mostert M, Aicardi G. Growth and development in simple obesity. Eur J Pediatr. 1988;147(3):242–4.

    Article  CAS  Google Scholar 

  27. Small BG, Wendt B, Jamei M, Johnson TN. Prediction of liver volume—a population-based approach to meta-analysis of paediatric, adult and geriatric populations—an update. Biopharm Drug Dispos. 2017;38(4):290–300. https://doi.org/10.1002/bdd.2063.

    Article  CAS  PubMed  Google Scholar 

  28. Knibbe CAJ, Brill MJE, van Rongen A, Diepstraten J, van der Graaf PH, Danhof M. Drug disposition in obesity: toward evidence-based dosing. Annu Rev Pharmacol Toxicol. 2015;55:149–67. https://doi.org/10.1146/annurev-pharmtox-010814-124354.

    Article  CAS  PubMed  Google Scholar 

  29. Benedek IH, Blouin RA, McNamara PJ. Serum protein binding and the role of increased alpha 1-acid glycoprotein in moderately obese male subjects. Br J Clin Pharmacol. 1984;18(6):941–6.

    Article  CAS  Google Scholar 

  30. Jung UJ, Choi M-S. Obesity and its metabolic complications: the role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease. Int J Mol Sci. 2014;15(4):6184–223. https://doi.org/10.3390/ijms15046184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bauer LA, Black DJ, Lill JS. Vancomycin dosing in morbidly obese patients. Eur J Clin Pharmacol. 1998;54(8):621–5.

    Article  CAS  Google Scholar 

  32. Caraco Y, Zylber-Katz E, Berry EM, Levy M. Significant weight reduction in obese subjects enhances carbamazepine elimination. Clin Pharmacol Ther. 1992;51(5):501–6.

    Article  CAS  Google Scholar 

  33. Caraco Y, Zylber-Katz E, Berry EM, Levy M. Carbamazepine pharmacokinetics in obese and lean subjects. Ann Pharmacother. 1995;29(9):843–7. https://doi.org/10.1177/106002809502900902.

    Article  CAS  PubMed  Google Scholar 

  34. Angulo P. Nonalcoholic fatty liver disease. N Engl J Med. 2002;346(16):1221–31. https://doi.org/10.1056/NEJMra011775.

    Article  CAS  PubMed  Google Scholar 

  35. Brill MJE, Diepstraten J, van Rongen A, van Kralingen S, van den Anker JN, Knibbe CAJ. Impact of obesity on drug metabolism and elimination in adults and children. Clin Pharmacokinet. 2012;51(5):277–304. https://doi.org/10.2165/11599410-000000000-00000.

    Article  CAS  PubMed  Google Scholar 

  36. Ghobadi C, Johnson TN, Aarabi M, et al. Application of a systems approach to the bottom-up assessment of pharmacokinetics in obese patients: expected variations in clearance. Clin Pharmacokinet. 2011;50(12):809–22. https://doi.org/10.2165/11594420-000000000-00000.

    Article  CAS  PubMed  Google Scholar 

  37. Pediatric Trials Network | PTN. https://pediatrictrials.org/. Accessed 22 Mar 2019.

  38. Diepstraten J, Chidambaran V, Sadhasivam S, et al. Propofol clearance in morbidly obese children and adolescents: influence of age and body size. Clin Pharmacokinet. 2012;51(8):543–51. https://doi.org/10.2165/11632940-000000000-00000.

    Article  CAS  PubMed  Google Scholar 

  39. Diepstraten J, Chidambaran V, Sadhasivam S, et al. An integrated population pharmacokinetic meta-analysis of propofol in morbidly obese and nonobese adults, adolescents, and children. CPT Pharmacometrics Syst Pharmacol. 2013;2:e73. https://doi.org/10.1038/psp.2013.47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Olutoye OA, Yu X, Govindan K, et al. The effect of obesity on the ED(95) of propofol for loss of consciousness in children and adolescents. Anesth Analg. 2012;115(1):147–53. https://doi.org/10.1213/ANE.0b013e318256858f.

    Article  CAS  PubMed  Google Scholar 

  41. Chidambaran V, Sadhasivam S, Diepstraten J, et al. Evaluation of propofol anesthesia in morbidly obese children and adolescents. BMC Anesthesiol. 2013;13:8. https://doi.org/10.1186/1471-2253-13-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Vaughns JD, Ziesenitz VC, van den Anker JN. Clinical pharmacology of frequently used intravenous drugs during bariatric surgery in adolescents. Curr Pharm Des. 2015;21(39):5650–9.

    Article  CAS  Google Scholar 

  43. Vaughns JD, Ziesenitz VC, Williams EF, et al. Use of fentanyl in adolescents with clinically severe obesity undergoing bariatric surgery: a pilot study. Paediatr Drugs. 2017;19(3):251–7. https://doi.org/10.1007/s40272-017-0216-6.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Gish EC, Harrison D, Gormley AK, Johnson PN. Dosing evaluation of continuous intravenous fentanyl infusions in overweight children: a pilot study. J Pediatr Pharmacol Ther. 2011;16(1):39–46. https://doi.org/10.5863/1551-6776-16.1.39.

    Article  PubMed  PubMed Central  Google Scholar 

  45. van Rongen A, Vaughns JD, Moorthy GS, Barrett JS, Knibbe CAJ, van den Anker JN. Population pharmacokinetics of midazolam and its metabolites in overweight and obese adolescents. Br J Clin Pharmacol. 2015;80(5):1185–96. https://doi.org/10.1111/bcp.12693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. van Rongen A, Brill MJE, Vaughns JD, et al. Higher midazolam clearance in obese adolescents compared with morbidly obese adults. Clin Pharmacokinet. 2018;57(5):601–11. https://doi.org/10.1007/s40262-017-0579-4.

    Article  CAS  PubMed  Google Scholar 

  47. van Kralingen S, Diepstraten J, Peeters MYM, et al. Population pharmacokinetics and pharmacodynamics of propofol in morbidly obese patients. Clin Pharmacokinet. 2011;50(11):739–50. https://doi.org/10.2165/11592890-000000000-00000.

    Article  PubMed  Google Scholar 

  48. Dong D, Peng X, Liu J, Qian H, Li J, Wu B. Morbid obesity alters both pharmacokinetics and pharmacodynamics of propofol: dosing recommendation for anesthesia induction. Drug Metab Dispos. 2016;44(10):1579–83. https://doi.org/10.1124/dmd.116.071605.

    Article  CAS  PubMed  Google Scholar 

  49. Samuels PJ, Sjoblom MD. Anesthetic considerations for pediatric obesity and adolescent bariatric surgery. Curr Opin Anaesthesiol. 2016;29(3):327–36. https://doi.org/10.1097/ACO.0000000000000330.

    Article  CAS  PubMed  Google Scholar 

  50. Shibutani K, Inchiosa MA, Sawada K, Bairamian M. Pharmacokinetic mass of fentanyl for postoperative analgesia in lean and obese patients. Br J Anaesth. 2005;95(3):377–83. https://doi.org/10.1093/bja/aei195.

    Article  CAS  PubMed  Google Scholar 

  51. Leykin Y, Pellis T, Lucca M, Lomangino G, Marzano B, Gullo A. The pharmacodynamic effects of rocuronium when dosed according to real body weight or ideal body weight in morbidly obese patients. Anesth Analg. 2004;99(4):1086–9. https://doi.org/10.1213/01.ane.0000120081.99080.c2.

    Article  PubMed  Google Scholar 

  52. Meyhoff CS, Lund J, Jenstrup MT, et al. Should dosing of rocuronium in obese patients be based on ideal or corrected body weight? Anesth Analg. 2009;109(3):787–92. https://doi.org/10.1213/ane.0b013e3181b0826a.

    Article  CAS  PubMed  Google Scholar 

  53. Longo C, Bartlett G, Macgibbon B, et al. The effect of obesity on antibiotic treatment failure: a historical cohort study. Pharmacoepidemiol Drug Saf. 2013;22(9):970–6. https://doi.org/10.1002/pds.3461.

    Article  CAS  PubMed  Google Scholar 

  54. Heble DE, McPherson C, Nelson MP, Hunstad DA. Vancomycin trough concentrations in overweight or obese pediatric patients. Pharmacotherapy. 2013;33(12):1273–7. https://doi.org/10.1002/phar.1321.

    Article  CAS  PubMed  Google Scholar 

  55. Moffett BS, Kim S, Edwards MS. Vancomycin dosing in obese pediatric patients. Clin Pediatr (Phila). 2011;50(5):442–6. https://doi.org/10.1177/0009922810393500.

    Article  PubMed  Google Scholar 

  56. Eiland LS, Sonawane KB. Vancomycin dosing in healthy-weight, overweight, and obese pediatric patients. J Pediatr Pharmacol Ther. 2014;19(3):182–8. https://doi.org/10.5863/1551-6776-19.3.182.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Le J, Capparelli EV, Wahid U, et al. Bayesian estimation of vancomycin pharmacokinetics in obese children: matched case–control study. Clin Ther. 2015;37(6):1340–51. https://doi.org/10.1016/j.clinthera.2015.05.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Nassar L, Hadad S, Gefen A, et al. Prospective evaluation of the dosing regimen of vancomycin in children of different weight categories. Curr Drug Saf. 2012;7(5):375–81.

    Article  CAS  Google Scholar 

  59. Madigan T, Sieve RM, Graner KK, Banerjee R. The effect of age and weight on vancomycin serum trough concentrations in pediatric patients. Pharmacotherapy. 2013;33(12):1264–72. https://doi.org/10.1002/phar.1331.

    Article  CAS  PubMed  Google Scholar 

  60. Camaione L, Elliott K, Mitchell-Van Steele A, Lomaestro B, Pai MP. Vancomycin dosing in children and young adults: back to the drawing board. Pharmacotherapy. 2013;33(12):1278–87. https://doi.org/10.1002/phar.1345.

    Article  CAS  PubMed  Google Scholar 

  61. Koshida R, Nakashima E, Taniguchi N, Tsuji A, Benet LZ, Ichimura F. Prediction of the distribution volumes of cefazolin and tobramycin in obese children based on physiological pharmacokinetic concepts. Pharm Res. 1989;6(6):486–91.

    Article  CAS  Google Scholar 

  62. Schmitz ML, Blumer JL, Cetnarowski W, Rubino CM. Determination of appropriate weight-based cutoffs for empiric cefazolin dosing using data from a phase 1 pharmacokinetics and safety study of cefazolin administered for surgical prophylaxis in pediatric patients aged 10 to 12 years. Antimicrob Agents Chemother. 2015;59(7):4173–80. https://doi.org/10.1128/AAC.00082-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Smith MJ, Gonzalez D, Goldman JL, et al. Pharmacokinetics of clindamycin in obese and nonobese children. Antimicrob Agents Chemother. 2017. https://doi.org/10.1128/aac.02014-16.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Bratzler DW, Dellinger EP, Olsen KM, et al. Clinical practice guidelines for antimicrobial prophylaxis in surgery. Am J Health Syst Pharm. 2013;70(3):195–283. https://doi.org/10.2146/ajhp120568.

    Article  CAS  PubMed  Google Scholar 

  65. Barshop NJ, Capparelli EV, Sirlin CB, Schwimmer JB, Lavine JE. Acetaminophen pharmacokinetics in children with nonalcoholic fatty liver disease. J Pediatr Gastroenterol Nutr. 2011;52(2):198–202. https://doi.org/10.1097/MPG.0b013e3181f9b3a0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Abernethy DR, Divoll M, Greenblatt DJ, Ameer B. Obesity, sex, and acetaminophen disposition. Clin Pharmacol Ther. 1982;31(6):783–90.

    Article  CAS  Google Scholar 

  67. van Rongen A, Välitalo PAJ, Peeters MYM, et al. Morbidly obese patients exhibit increased CYP2E1-mediated oxidation of acetaminophen. Clin Pharmacokinet. 2016;55(7):833–47. https://doi.org/10.1007/s40262-015-0357-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Goday Arno A, Farré M, Rodríguez-Morató J, et al. Pharmacokinetics in morbid obesity: influence of two bariatric surgery techniques on paracetamol and caffeine metabolism. Obes Surg. 2017;27(12):3194–201. https://doi.org/10.1007/s11695-017-2745-z.

    Article  PubMed  Google Scholar 

  69. Abernethy DR, Greenblatt DJ. Drug disposition in obese humans. An update. Clin Pharmacokinet. 1986;11(3):199–213. https://doi.org/10.2165/00003088-198611030-00002.

    Article  CAS  PubMed  Google Scholar 

  70. Milsap RL, Plaisance KI, Jusko WJ. Prednisolone disposition in obese men. Clin Pharmacol Ther. 1984;36(6):824–31.

    Article  CAS  Google Scholar 

  71. Goleva E, Covar R, Martin RJ, Leung DYM. Corticosteroid pharmacokinetic abnormalities in overweight and obese corticosteroid resistant asthmatics. J Allergy Clin Immunol Pract. 2016;4(2):357.e2–360.e2. https://doi.org/10.1016/j.jaip.2015.11.013.

    Article  Google Scholar 

  72. Anderson WJ, Lipworth BJ. Does body mass index influence responsiveness to inhaled corticosteroids in persistent asthma? Ann Allergy Asthma Immunol. 2012;108(4):237–42. https://doi.org/10.1016/j.anai.2011.12.006.

    Article  CAS  PubMed  Google Scholar 

  73. Farzan S, Khan S, Elera C, Tsang J, Akerman M, DeVoti J. Effectiveness of montelukast in overweight and obese atopic asthmatics. Ann Allergy Asthma Immunol. 2017;119(2):189–90. https://doi.org/10.1016/j.anai.2017.05.024.

    Article  CAS  PubMed  Google Scholar 

  74. McGarry ME, Castellanos E, Thakur N, et al. Obesity and bronchodilator response in black and Hispanic children and adolescents with asthma. Chest. 2015;147(6):1591–8. https://doi.org/10.1378/chest.14-2689.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Camargo CA, Boulet L-P, Sutherland ER, et al. Body mass index and response to asthma therapy: fluticasone propionate/salmeterol versus montelukast. J Asthma. 2010;47(1):76–82. https://doi.org/10.3109/02770900903338494.

    Article  CAS  PubMed  Google Scholar 

  76. Camargo CA, Sutherland ER, Bailey W, et al. Effect of increased body mass index on asthma risk, impairment and response to asthma controller therapy in African Americans. Curr Med Res Opin. 2010;26(7):1629–35. https://doi.org/10.1185/03007995.2010.483113.

    Article  PubMed  Google Scholar 

  77. Pelaia G, Vatrella A, Busceti MT, et al. Cellular mechanisms underlying eosinophilic and neutrophilic airway inflammation in asthma. Mediators Inflamm. 2015;2015:879783. https://doi.org/10.1155/2015/879783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ebbeling CB, Pawlak DB, Ludwig DS. Childhood obesity: public-health crisis, common sense cure. Lancet. 2002;360(9331):473–82. https://doi.org/10.1016/S0140-6736(02)09678-2.

    Article  Google Scholar 

  79. Chang C-J, Jian D-Y, Lin M-W, Zhao J-Z, Ho L-T, Juan C-C. Evidence in obese children: contribution of hyperlipidemia, obesity-inflammation, and insulin sensitivity. PLoS One. 2015;10(5):e0125935. https://doi.org/10.1371/journal.pone.0125935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lamaida N, Capuano E, Pinto L, Capuano E, Capuano R, Capuano V. The safety of statins in children. Acta Paediatr. 2013;102(9):857–62. https://doi.org/10.1111/apa.12280.

    Article  CAS  PubMed  Google Scholar 

  81. Wagner JB, Abdel-Rahman S, Van Haandel L, et al. Impact of SLCO1B1 genotype on pediatric simvastatin acid pharmacokinetics. J Clin Pharmacol. 2018;58(6):823–33. https://doi.org/10.1002/jcph.1080.

    Article  CAS  PubMed  Google Scholar 

  82. Wagner JB, Abdel-Rahman S, Gaedigk R, et al. Impact of genetic variation on pravastatin systemic exposure in pediatric hypercholesterolemia. Clin Pharmacol Ther. 2018. https://doi.org/10.1002/cpt.1330.

    Article  PubMed  PubMed Central  Google Scholar 

  83. DeGorter MK, Tirona RG, Schwarz UI, et al. Clinical and pharmacogenetic predictors of circulating atorvastatin and rosuvastatin concentrations in routine clinical care. Circ Cardiovasc Genet. 2013;6(4):400–8. https://doi.org/10.1161/CIRCGENETICS.113.000099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Shitara Y, Sugiyama Y. Pharmacokinetic and pharmacodynamic alterations of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors: drug-drug interactions and interindividual differences in transporter and metabolic enzyme functions. Pharmacol Ther. 2006;112(1):71–105. https://doi.org/10.1016/j.pharmthera.2006.03.003.

    Article  CAS  PubMed  Google Scholar 

  85. Hanafy S, Pinsk M, Jamali F. Effect of obesity on response to cardiovascular drugs in pediatric patients with renal disease. Pediatr Nephrol. 2009;24(4):815–21. https://doi.org/10.1007/s00467-008-1064-y.

    Article  PubMed  Google Scholar 

  86. Sankaralingam S, Kim RB, Padwal RS. The impact of obesity on the pharmacology of medications used for cardiovascular risk factor control. Can J Cardiol. 2015;31(2):167–76. https://doi.org/10.1016/j.cjca.2014.10.025.

    Article  PubMed  Google Scholar 

  87. Koebnick C, Getahun D, Smith N, Porter AH, Der-Sarkissian JK, Jacobsen SJ. Extreme childhood obesity is associated with increased risk for gastroesophageal reflux disease in a large population-based study. Int J Pediatr Obes. 2011;6(2–2):e257–63. https://doi.org/10.3109/17477166.2010.491118.

    Article  PubMed  Google Scholar 

  88. Gold BD. Gastroesophageal reflux disease: could intervention in childhood reduce the risk of later complications? Am J Med. 2004;117(Suppl 5A):23S–9S.

    PubMed  Google Scholar 

  89. Shakhnovich V, Abdel-Rahman S, Friesen CA, et al. Lean body weight dosing avoids excessive systemic exposure to proton pump inhibitors for children with obesity. Pediatr Obes. 2019. https://doi.org/10.1111/ijpo.12459.

    Article  PubMed  Google Scholar 

  90. Shakhnovich V, Smith PB, Guptill JT, et al. Obese children require lower doses of pantoprazole than nonobese peers to achieve equal systemic drug exposures. J Pediatr. 2018;193(102–108):e1. https://doi.org/10.1016/j.jpeds.2017.10.011.

    Article  CAS  Google Scholar 

  91. Shakhnovich V, Brian Smith P, Guptill JT, et al. A population-based pharmacokinetic model approach to pantoprazole dosing for obese children and adolescents. Paediatr Drugs. 2018;20(5):483–95. https://doi.org/10.1007/s40272-018-0305-1.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Chen W-Y, Chang W-L, Tsai Y-C, Cheng H-C, Lu C-C, Sheu B-S. Double-dosed pantoprazole accelerates the sustained symptomatic response in overweight and obese patients with reflux esophagitis in Los Angeles grades A and B. Am J Gastroenterol. 2010;105(5):1046–52. https://doi.org/10.1038/ajg.2009.632.

    Article  CAS  PubMed  Google Scholar 

  93. Stark CM, Nylund CM. Side effects and complications of proton pump inhibitors: a pediatric perspective. J Pediatr. 2016;168:16–22. https://doi.org/10.1016/j.jpeds.2015.08.064.

    Article  PubMed  Google Scholar 

  94. Atabek ME, Pirgon O. Use of metformin in obese adolescents with hyperinsulinemia: a 6-month, randomized, double-blind, placebo-controlled clinical trial. J Pediatr Endocrinol Metab. 2008;21(4):339–48.

    Article  CAS  Google Scholar 

  95. Sam WJ, Roza O, Hon YY, et al. Effects of SLC22A1 polymorphisms on metformin-induced reductions in adiposity and metformin pharmacokinetics in obese children with insulin resistance. J Clin Pharmacol. 2017;57(2):219–29. https://doi.org/10.1002/jcph.796.

    Article  CAS  PubMed  Google Scholar 

  96. van Rongen A, van der Aa MP, Matic M, et al. Increased metformin clearance in overweight and obese adolescents: a pharmacokinetic substudy of a randomized controlled trial. Paediatr Drugs. 2018;20(4):365–74. https://doi.org/10.1007/s40272-018-0293-1.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Bardin C, Nobecourt E, Larger E, Chast F, Treluyer J-M, Urien S. Population pharmacokinetics of metformin in obese and non-obese patients with type 2 diabetes mellitus. Eur J Clin Pharmacol. 2012;68(6):961–8. https://doi.org/10.1007/s00228-011-1207-0.

    Article  CAS  PubMed  Google Scholar 

  98. Sánchez-Infantes D, Díaz M, López-Bermejo A, Marcos MV, de Zegher F, Ibáñez L. Pharmacokinetics of metformin in girls aged 9 years. Clin Pharmacokinet. 2011;50(11):735–8. https://doi.org/10.2165/11593970-000000000-00000.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathryn E. Kyler.

Ethics declarations

Funding

VS receives funding support from the NASPGHAN Foundation and NCATS L40 TR000598.

Conflict of interest

KEK, JW, CH-C, KW and VS have no conflicts of interest to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kyler, K.E., Wagner, J., Hosey-Cojocari, C. et al. Drug Dose Selection in Pediatric Obesity: Available Information for the Most Commonly Prescribed Drugs to Children. Pediatr Drugs 21, 357–369 (2019). https://doi.org/10.1007/s40272-019-00352-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40272-019-00352-8

Navigation