Skip to main content
Log in

A review on therapeutic drug monitoring of the mTOR class of immunosuppressants: everolimus and sirolimus

  • Review Article
  • Published:
Drugs & Therapy Perspectives Aims and scope Submit manuscript

Abstract

Immunosuppression plays a key role in the prevention of organ rejection in transplant recipients and in the treatment of diverse autoimmune disorders. Therapeutic drug monitoring (TDM) for the mammalian target of rapamycin inhibitors (mTOR) class of immunosuppressants is mandatory in the clinical setting because of the narrow therapeutic index, high intersubject pharmacokinetic variability, under- and over-immunosuppression and adverse effects of these drugs. Immunosuppressive drug therapy is frequently individualized based on the organ transplanted, time after transplantation, and transplant centre-specific immunosuppressive protocols. Since predose trough concentrations (C o) correlate well with areas under the curve, C o levels are commonly used as predictable indices when monitoring everolimus and sirolimus. In kidney transplantation, the lowest incidence of adverse events is generally detected when everolimus C o is 3–8 ng/mL in combination therapy with ciclosporin and glucocorticoids. A regimen of mTOR inhibitors + tacrolimus minimization therapy reduced nephrotoxicity better than standard-dose tacrolimus, without significant changes in mortality or biopsy-proven acute rejection. Sirolimus whole blood C o should be set between 5 and 15 ng/mL, depending on the immunological risk, time of conversion and use of other immunosuppressive drugs. As per the Kidney Disease: Improving Global Outcomes recommendations, because of potential nephrotoxicity, the use of sirolimus and ciclosporin should be avoided during the early course of therapy. The evidence-based recommendations discussed in this review are useful for the optimal implementation of TDM in routine clinical practice. Avoiding calibration bias using whole blood calibrators, and the use of an external proficiency testing programme to improve analytical performance are highly recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lebwohl D, Anak O, Sahmoud T, et al. Development of everolimus, a novel oral mTOR inhibitor, across a spectrum of diseases. Ann N Y Acad Sci. 2013;1291:14–32.

    Article  CAS  PubMed  Google Scholar 

  2. Kirchner GI, Meier-Wiedenbach I, Manns MP. Clinical pharmacokinetics of everolimus. Clin Pharmacokinet. 2004;43:83–95.

    Article  CAS  PubMed  Google Scholar 

  3. Lemaitre F, Bezian E, Goldwirt L, et al. Population pharmacokinetics of everolimus in cardiac recipients: comedications, ABCB1, and CYP3A5 polymorphisms. Ther Drug Monit. 2012;34(6):686–94.

    Article  CAS  PubMed  Google Scholar 

  4. Kovarik JM, Hartmann S, Figueiredo J, et al. Effect of food on everolimus absorption: quantification in healthy subjects and a confirmatory screening in patients with renal transplants. Pharmacotherapy. 2002;22:154–9.

    Article  CAS  PubMed  Google Scholar 

  5. Tanaka A, Yano I, Shinsako K, et al. Population pharmacokinetics of everolimus in relation to clinical outcomes in patients with advanced renal cell carcinoma. Ther Drug Monit. 2016;38(6):663–9.

    Article  CAS  PubMed  Google Scholar 

  6. Spagnoletti G, Favi E, Gargiulo A, et al. Once-a-day administration of everolimus is safe in de novo renal transplant recipients: 1-year results of a pilot study. Transplant Proc. 2011;43:1010–2.

    Article  CAS  PubMed  Google Scholar 

  7. Shihab FS, Cibrik D, Chan L, et al. Association of clinical events with everolimus exposure in kidney transplant patients receiving reduced cyclosporine. Clin Transplant. 2013;27:217–26.

    Article  CAS  PubMed  Google Scholar 

  8. Wiseman AC, McCague K, Kim Y, et al. The effect of everolimus versus mycophenolate upon proteinuria following kidney transplant and relationship to graft outcomes. Am J Transplant. 2013;13:442–9.

    Article  CAS  PubMed  Google Scholar 

  9. Schaffer SA, Ross HJ. Everolimus: efficacy and safety in cardiac transplantation. Expert Opin Drug Saf. 2010;9:843–54.

    Article  CAS  PubMed  Google Scholar 

  10. Budde K, Neumayer HH, Lehne G, et al. Tolerability and steady-state pharmacokinetics of everolimus in maintenance renal transplant patients. Nephrol Dial Transplant. 2004;19:2606–14.

    Article  CAS  PubMed  Google Scholar 

  11. Tedesco-Silva H Jr, Vitko S, Pascual J, et al. 12-month safety and efficacy of everolimus with reduced exposure cyclosporine in de novo renal transplant recipients. Transpl Int. 2007;20:27–36.

    Article  CAS  PubMed  Google Scholar 

  12. Keane WF. Proteinuria: its clinical importance and role in progressive renal disease. Am J Kidney Dis. 2000;35:S97–105.

    Article  CAS  PubMed  Google Scholar 

  13. Torras J, Herrero-Fresneda I, Gulias O, et al. Rapamycin has dual opposing effects on proteinuric experimental nephropathies: is it a matter of podocyte damage? Nephrol Dial Transplant. 2009;24:3632–40.

    Article  CAS  PubMed  Google Scholar 

  14. Picard N, Rouguieg-Malki K, Kamar N, et al. CYP3A5 genotype does not influence everolimus in vitro metabolism and clinical pharmacokinetics in renal transplant recipients. Transplantation. 2011;91:652–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lefeuvre S, Rebaudet S, Billaud EM, et al. Management of rifamycins-everolimus drug-drug interactions in a liver-transplant patient with pulmonary tuberculosis. Transpl Int. 2012;25(11):e120–3.

    Article  PubMed  Google Scholar 

  16. Billaud EM, Antoine C, Berge M, et al. Management of metabolic cytochrome P450 3A4 drug-drug interaction between everolimus and azole antifungals in a renal transplant patient. Clin Drug Investig. 2009;29:481–6.

    Article  CAS  PubMed  Google Scholar 

  17. Kovarik JM, Kahan BD, Kaplan B. Longitudinal assessment of everolimus in de novo renal transplant recipients over the first posttransplant year: pharmacokinetics, exposure-response relationships, and influence on cyclosporine. Clin Pharmacol Ther. 2001;69:48–56.

    Article  CAS  PubMed  Google Scholar 

  18. Robertsen I, Vethe NT, Midtvedt K, et al. Closer to the site of action; everolimus concentrations in peripheral blood mononuclear cells correlate well with whole blood concentrations. Ther Drug Monit. 2015;37:675–80.

    Article  CAS  PubMed  Google Scholar 

  19. Kovarik JM, Sabia HD, Figueiredo J, et al. Influence of hepatic impairment on everolimus pharmacokinetics: implications for dose adjustment. Clin Pharmacol Ther. 2001;70:425–30.

    Article  CAS  PubMed  Google Scholar 

  20. Naesens M. Switching from calcineurin inhibitors to mammalian target of rapamycin inhibitors-finally caught the right wave? Transplantation. 2011;92:728–30.

    Article  PubMed  Google Scholar 

  21. Shihab F, Christians U, Smith L, et al. Focus on mTOR inhibitors and tacrolimus in renal transplantation: pharmacokinetics, exposure response relationships, and clinical outcomes. Transpl Immunol. 2014;31:22–32.

    Article  CAS  PubMed  Google Scholar 

  22. Chan L, Hartmann E, Cibrik D, et al. Optimal everolimus concentration is associated with risk reduction for acute rejection in de novo renal transplant recipients. Transplantation. 2010;90:31–7.

    Article  PubMed  Google Scholar 

  23. Peddi VR, Wiseman A, Chavin K, et al. Review of combination therapy with mTOR inhibitors and tacrolimus minimization after transplantation. Transplant Rev (Orlando). 2013;27:97–107.

    Article  Google Scholar 

  24. Kovarik JM, Curtis JJ, Hricik DE, et al. Differential pharmacokinetic interaction of tacrolimus and cyclosporine on everolimus. Transplant Proc. 2006;38:3456–8.

    Article  CAS  PubMed  Google Scholar 

  25. Brandhorst G, Tenderich G, Zittermann A, et al. Everolimus exposure in cardiac transplant recipients is influenced by concomitant calcineurin inhibitor. Ther Drug Monit. 2008;30:113–6.

    Article  CAS  PubMed  Google Scholar 

  26. Lorber MI, Mulgaonkar S, Butt KM, et al. Everolimus versus mycophenolate mofetil in the prevention of rejection in de novo renal transplant recipients: a 3-year randomized, multicenter, phase III study. Transplantation. 2005;80:244–52.

    Article  CAS  PubMed  Google Scholar 

  27. Vítko S, Margreiter R, Weimar W, et al. Three-year efficacy and safety results from a study of everolimus versus mycophenolate mofetil in de novo renal transplant patients. Am J Transplant. 2005;5:2521–30.

    Article  PubMed  CAS  Google Scholar 

  28. Lorber MI, Ponticelli C, Whelchel J, et al. Therapeutic drug monitoring for everolimus in kidney transplantation using 12-month exposure, efficacy, and safety data. Clin Transplant. 2005;19:145–52.

    Article  PubMed  Google Scholar 

  29. Kovarik JM, Tedesco H, Pascual J, et al. Everolimus therapeutic concentration range defined from a prospective trial with reduced-exposure cyclosporine in de novo kidney transplantation. Ther Drug Monit. 2004;26:499–505.

    Article  CAS  PubMed  Google Scholar 

  30. Dantal J, Berthoux F, Moal MC, et al. Efficacy and safety of de novo or early everolimus with low cyclosporine in deceased-donor kidney transplant recipients at specified risk of delayed graft function: 12- month results of a randomized, multicenter trial. Transpl Int. 2010;23:1084–93.

    Article  CAS  PubMed  Google Scholar 

  31. Mjörnstedt L, Schwartz Sørensen S, von Zur Mühlen B, et al. Renal function three years after early conversion from a calcineurin inhibitor to everolimus: results from a randomized trial in kidney transplantation. Transpl Int. 2015;28:42–51.

    Article  PubMed  CAS  Google Scholar 

  32. Budde K, Lehner F, Sommerer C, et al. Conversion from cyclosporine to everolimus at 4.5 months posttransplant: 3-year results from the randomized ZEUS study. Am J Transplant. 2012;12:1528–40.

    Article  CAS  PubMed  Google Scholar 

  33. Budde K, Lehner F, Sommerer C, et al. Five-year outcomes in kidney transplant patients converted from cyclosporine to everolimus: the randomized ZEUS study. Am J Transplant. 2015;15:119–28.

    Article  CAS  PubMed  Google Scholar 

  34. Eisen HJ, Kobashigawa J, Starling RC, et al. Everolimus versus mycophenolate mofetil in heart transplantation: a randomized, multicentre trial. Am J Transplant. 2013;13:1203–16.

    Article  CAS  PubMed  Google Scholar 

  35. Oh CK, Huh KH, Ha J, et al. Safety and efficacy of the early introduction of everolimus with reduced-exposure cyclosporine in de novo kidney recipients. Transplantation. 2015;99:180–6.

    Article  CAS  PubMed  Google Scholar 

  36. Budde K, Becker T, Arns W, et al. Everolimus-based, calcineurin inhibitor- free regimen in recipients of de-novo kidney transplants: an open-label, randomised, controlled trial. Lancet. 2011;377:837–47.

    Article  CAS  PubMed  Google Scholar 

  37. Nashan B. Review of the proliferation inhibitor everolimus. Expert Opin Investig Drugs. 2002;11:1845–57.

    Article  CAS  PubMed  Google Scholar 

  38. Jin YP, Valenzuela NM, Ziegler ME, et al. Everolimus inhibits anti-HLA I antibody-mediated endothelial cell signaling, migration and proliferation more potently than sirolimus. Am J Transplant. 2014;14(4):806–19.

    Article  CAS  PubMed  Google Scholar 

  39. Chadban SJ, Eris JM, Kanellis J, et al. A randomized, controlled trial of everolimus-based dual immunosuppression versus standard of care in de novo kidney transplant recipients. Transpl Int. 2014;27:302–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Budde K, Rath T, Sommerer C, et al. Renal, efficacy and safety outcomes following late conversion of kidney transplant patients from calcineurin inhibitor therapy to everolimus: the randomized APOLLO study. Clin Nephrol. 2015;83(1):11–21.

    Article  CAS  PubMed  Google Scholar 

  41. Holdaas H, Rostaing L, Serón D, et al. Conversion of long-term kidney transplant recipients from calcineurin inhibitor therapy to everolimus: a randomized, multicenter, 24-month study. Transplantation. 2011;92:410–8.

    Article  CAS  PubMed  Google Scholar 

  42. Bemelman FJ, de Maar EF, Press RR, et al. Minimization of maintenance immunosuppression early after renal transplantation: an interim analysis. Transplantation. 2009;88:421–8.

    Article  PubMed  Google Scholar 

  43. De Simone P, Metselaar HJ, Fischer L, et al. Conversion from a calcineurin inhibitor to everolimus therapy in maintenance liver transplant recipients: a prospective, randomized, multicenter trial. Liver Transplant. 2009;15:1262–9.

    Article  Google Scholar 

  44. Saliba F, Dharancy S, Lorho R, et al. Conversion to everolimus in maintenance liver transplant patients: a multicenter, retrospective analysis. Liver Transplant. 2011;17:905–13.

    Article  Google Scholar 

  45. Sato E, Hashi S, Taniguchi R, et al. Effectiveness of everolimus in combination with cyclosporine as treatment for chronic rejection in a pediatric patient undergoing liver transplantation. Jpn J Ther Drug Monit. 2014;31:1–5.

    Google Scholar 

  46. Cholongitas E, Mamou C, Rodríguez-Castro KI, et al. Mammalian target of rapamycin inhibitors are associated with lower rates of hepatocellular carcinoma recurrence after liver transplantation: a systematic review. Transpl Int. 2014;27:1039–49.

    Article  CAS  PubMed  Google Scholar 

  47. Asrani SK, Wiesner RH, Trotter JF, et al. De novo sirolimus and reduced-dose tacrolimus versus standard-dose tacrolimus after liver transplantation: the 2000–2003 phase II prospective randomized trial. Am J Transplant. 2014;14:356–66.

    Article  CAS  PubMed  Google Scholar 

  48. SimoneP De, Nevens F, De Carlis L, et al. Everolimus with reduced tacrolimus improves renal function in de novo liver transplant recipients; a randomized controlled trial. Am J Transplant. 2012;12:3008–20.

    Article  CAS  Google Scholar 

  49. Strueber M, Warnecke G, Fuge J, et al. Everolimus versus mycophenolate mofetil de novo after lung transplantation: a prospective, randomized, open-label trial. Am J Transplant. 2016;16(11):3171–80.

    Article  CAS  PubMed  Google Scholar 

  50. Groetzner J, Kur F, Spelsberg F, et al. Airway anastomosis complications in de novo lung transplantation with sirolimus-based immunosuppression. J Heart Lung Transplant. 2004;23:632–8.

    Article  PubMed  Google Scholar 

  51. de Pablo A, Santos F, Solé A, et al. Recommendations on the use of everolimus in lung transplantation. Transplant Rev (Orlando). 2013;27:9–16.

    Article  Google Scholar 

  52. Schneer S, Kramer MR, Fox B, et al. Renal function preservation with the mTOR inhibitor, everolimus, after lung transplant. Clin Transplant. 2014;28(6):662–8.

    Article  CAS  PubMed  Google Scholar 

  53. Ritta M, Costa C, Solidoro P, et al. Everolimus-based immunosuppressive regimens in lung transplant recipients: impact on CMV infection. Antiviral Res. 2015;2015(113):19–26.

    Article  CAS  Google Scholar 

  54. Outeda Macías M, Salvador Garrido P, Elberdín Pazos L, et al. Management of everolimus and voriconazole interaction in lung transplant patients. Ther Drug Monit. 2016;38(3):305–12.

    Article  PubMed  CAS  Google Scholar 

  55. Kobashigawa JA, Pauly DF, Starling RC, et al. Cardiac allograft vasculopathy by intravascular ultrasound in heart transplant patients: substudy from the everolimus versus mycophenolate mofetil randomized, multicenter trial. JACC Heart Fail. 2013;1(5):389–99.

    Article  PubMed  Google Scholar 

  56. Manito N, Delgado JF, Crespo-Leiro MG, et al. Clinical recommendations for the use of everolimus in heart transplantation. Transplant Rev (Orlando). 2010;24(3):129–42.

    Article  Google Scholar 

  57. Kovarik JM, Eisen H, Dorent R, et al. Everolimus in de novo cardiac transplantation: pharmacokinetics, therapeutic range, and influence on cyclosporine exposure. J Heart Lung Transplant. 2003;22:1117–25.

    Article  PubMed  Google Scholar 

  58. Starling RC, Hare JM, Hauptman P, et al. Therapeutic drug monitoring for everolimus in heart transplant recipients based on exposure-effect modeling. Am J Transplant. 2004;4:2126–31.

    Article  CAS  PubMed  Google Scholar 

  59. Zuckermann A, Wang SS, Ross H, et al. Efficacy and safety of low-dose cyclosporine with everolimus and steroids in de novo heart transplant patients: a multicentre, randomized trial. J Transplant. 2011;2011:535983.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Andreassen AK, Andersson B, Gustafsson F, et al. Everolimus initiation with early calcineurin inhibitor withdrawal in de novo heart transplant recipients: three-year results from the randomized SCHEDULE study. Am J Transplant. 2016;16(4):1238–47.

    Article  CAS  PubMed  Google Scholar 

  61. Gullestad L, Mortensen SA, Eiskjaer H, et al. Two-year outcomes in thoracic transplant recipients after conversion to everolimus with reduced calcineurin inhibitor within a multicenter, open-label, randomized trial. Transplantation. 2010;90(12):1581–9.

    Article  CAS  PubMed  Google Scholar 

  62. Deuse T, Bara C, Barten MJ, et al. The MANDELA study: a multicenter, randomized, open-label, parallel group trial to refine the use of everolimus after heart transplantation. Contemp Clin Trials. 2015;45(Pt B):356–63.

    Article  PubMed  Google Scholar 

  63. Baselga J, Campone M, Piccart M, et al. Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N Engl J Med. 2012;366:520–9.

    Article  CAS  PubMed  Google Scholar 

  64. André F, O’Regan R, Ozguroglu M, et al. Everolimus for women with trastuzumab-resistant, HER2-positive, advanced breast cancer (BOLERO-3): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet Oncol. 2014;15:580–91.

    Article  PubMed  CAS  Google Scholar 

  65. Piccart M, Hortobagyi GN, Campone M, et al. Everolimus plus exemestane for hormone-receptor-positive, human epidermal growth factor receptor-2-negative advanced breast cancer: overall survival results from BOLERO-2. Ann Oncol. 2014;25:2357–62.

    Article  CAS  PubMed  Google Scholar 

  66. Pavel ME, Hainsworth JD, Baudin E, et al. Everolimus plus octreotide long-acting repeatable for the treatment of advanced neuroendocrine tumours associated with carcinoid syndrome (RADIANT-2): a randomised, placebo-controlled, phase 3 study. Lancet. 2011;378:2005–12.

    Article  CAS  PubMed  Google Scholar 

  67. Duran I, Goebell PJ, Papazisis K, et al. Drug-induced pneumonitis in cancer patients treated with mTOR inhibitors: management and insights into possible mechanisms. Expert Opin Drug Saf. 2014;13:361–72.

    Article  CAS  PubMed  Google Scholar 

  68. Franz DN, Agricola K, Mays M, et al. Everolimus for subependymal giant cell astrocytoma: 5-year final analysis. Ann Neurol. 2015;78:929–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kotulska K, Chmielewski D, Borkowska J, et al. Long-term effect of everolimus on epilepsy and growth in children under 3 years of age treated for subependymal giant cell astrocytoma associated with tuberous sclerosis complex. Eur J Paediatr Neurol. 2013;17(5):479–85.

    Article  PubMed  Google Scholar 

  70. Samueli S, Abraham K, Dressler A, et al. Efficacy and safety of everolimus in children with TSC-associated epilepsy: pilot data from an open single-center prospective study. Orphanet J Rare Dis. 2016;11(1):145.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Krueger DA, Northrup H. Tuberous sclerosis complex surveillance and management: recommendations of the 2012 International Tuberous Sclerosis Complex Consensus Conference. Pediatr Neurol. 2013;49:255–65.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Seyfarth HJ, Hammerschmidt S, Halank M, et al. Everolimus in patients with severe pulmonary hypertension: a safety and efficacy pilot trial. Pulm Circ. 2013;3:632–8.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Atli Ö, Ilgin S, Ergun B, et al. Matrix metalloproteinases are possible targets in monocrotaline-induced pulmonary hypertension: investigation of anti-remodeling effects of alagebrium and everolimus. Anatol J Cardiol. 2017;17(1):8–17.

    PubMed  Google Scholar 

  74. Tszyrsznic W, Borowiec A, Pawlowska E, et al. Two rapid ultra performance liquid chromatography/tandem mass spectrometry (UPLC/ MS/MS) methods with common sample pretreatment for therapeutic drug monitoring of immunosuppressants compared to immunoassay. J Chromatogr B Anal Technol Biomed Life Sci. 2013;928:9–15.

    Article  CAS  Google Scholar 

  75. Koster RA, Dijkers EC, Uges DR. Robust, high-throughput LC–MS/MS method for therapeutic drug monitoring of cyclosporine, tacrolimus, everolimus, and sirolimus in whole blood. Ther Drug Monit. 2009;31:116–25.

    Article  CAS  PubMed  Google Scholar 

  76. Deters M, Kirchner G, Resch K, et al. Simultaneous quantification of sirolimus, everolimus, tacrolimus and cyclosporine by liquid chromatography–mass spectrometry (LC–MS). Clin Chem Lab Med. 2002;40:285–92.

    Article  CAS  PubMed  Google Scholar 

  77. Streit F, Armstrong VW, Oellerich M. Rapid liquid chromatography–tandem mass spectrometry routine method for simultaneous determination of sirolimus, everolimus, tacrolimus, and cyclosporin A in whole blood. Clin Chem. 2002;48:955–8.

    CAS  PubMed  Google Scholar 

  78. Morgan PE, Brown NW, Tredger JM. A direct method for the measurement of everolimus and sirolimus in whole blood by LC–MS/MS using an isotopic everolimus internal standard. Ther Drug Monit. 2014;36(3):358–65.

    Article  CAS  PubMed  Google Scholar 

  79. Bouzas L, Tutor JC. Determination of blood everolimus concentrations in kidney and liver transplant recipients using the sirolimus antibody conjugated magnetic immunoassay (ACMIA). Clin Lab. 2011;57:403–6.

    PubMed  Google Scholar 

  80. Thermo Fisher Scientific. 2016. https://tools.thermofisher.com/content/sfs/manuals/0160195-QMS-Everolimus-Assay-US-EN.pdf. Accessed 21 Dec 2016.

  81. Khoschsorur G, Fruehwirth F, Zelzer S, et al. Comparison of fluorescent polarization immunoassay (FPIA) versus HPLC to measure everolimus blood concentrations in clinical transplantation. Clin Chim Acta. 2007;380(1–2):217–21.

    Article  PubMed  CAS  Google Scholar 

  82. Hoffer E, Kurnik D, Efrati E, et al. Comparison of everolimus QMS immunoassay on Architect ci4100 and liquid chromatography/mass spectrometry: lack of agreement in organ transplanted patients. Ther Drug Monit. 2015;37:214–9.

    Article  CAS  PubMed  Google Scholar 

  83. Schniedewind B, Niederlechner S, Galinkin JL, et al. Long-term cross-validation of everolimus therapeutic drug monitoring assays: the Zortracker study. Ther Drug Monit. 2015;37(3):296–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Stacchiotti S, Provenzano S, Dagrada G, et al. Sirolimus in advanced epithelioid hemangioendothelioma: a retrospective case-series analysis from the Italian rare cancer network database. Ann Surg Oncol. 2016;23(9):2735–44.

    Article  PubMed  Google Scholar 

  85. Salloum R, Fox CE, Alvarez-Allende CR, et al. Response of blue rubber bleb nevus syndrome to sirolimus treatment. Pediatr Blood Cancer. 2016;63(11):1911–4.

    Article  CAS  PubMed  Google Scholar 

  86. Pfizer. 2016. http://labeling.pfizer.com/showlabeling.aspx?id=139. Accessed 22 Dec 2016.

  87. Kelly PA, Gruber SA, Behbod F, et al. Sirolimus, a new, potent immunosuppressive agent. Pharmacotherapy. 1997;17:1148–56.

    CAS  PubMed  Google Scholar 

  88. Kahan BD, Camardo JS. Rapamycin: clinical results and future opportunities. Transplantation. 2001;72:1181–93.

    Article  CAS  PubMed  Google Scholar 

  89. Zimmerman JJ, Kahan BD. Pharmacokinetics of sirolimus in stable renal transplant patients after multiple oral dose administration. J Clin Pharmacol. 1997;37:405–15.

    Article  CAS  PubMed  Google Scholar 

  90. Mahalati K, Kahan BD. Clinical pharmacokinetics of sirolimus. Clin Pharmacokinet. 2001;40(8):573–85.

    Article  CAS  PubMed  Google Scholar 

  91. Hardinger K, Brennan DC, Murphy B, et al. Pharmacology of mammalian (mechanistic) target of rapamycin (mTOR) inhibitors. 2015. http://www.uptodate.com. Accessed 25 Apr 2017.

  92. Lampen A, Zhang Y, Hackbarth I, et al. Metabolism and transport of the macrolide immunosuppressant sirolimus in the small intestine. J Pharmacol Exp Ther. 1998;285:1104–12.

    CAS  PubMed  Google Scholar 

  93. Kahan BD, Napoli KL, Kelly PA, et al. Therapeutic drug monitoring of sirolimus: correlations with efficacy and toxicity. Clin Transplant. 2000;14:97–109.

    Article  CAS  PubMed  Google Scholar 

  94. Kahan BD, Podbielski J, Napoli KL, et al. Immunosuppressive effects and safety of a sirolimus/cyclosporine combination regimen for renal transplantation. Transplantation. 1998;66(8):1040–6.

    Article  CAS  PubMed  Google Scholar 

  95. Kidney Disease: Improving Global Outcomes (KDIGO) Transplant Work Group. KDIGO clinical practice guideline for the care of kidney transplant recipients. Am J Transplant. 2012;5:S19.

    Google Scholar 

  96. Kaplan B, Meier-Kriesche HU, Napoli KL, et al. The effects of relative timing of sirolimus and cyclosporine microemulsion formulation coadministration on the pharmacokinetics of each agent. Clin Pharmacol Ther. 1998;63(1):48–53.

    Article  CAS  PubMed  Google Scholar 

  97. Kelly P, Kahan BD. Review: metabolism of immunosuppressant drugs. Curr Drug Metab. 2002;3(3):275–87.

    Article  CAS  PubMed  Google Scholar 

  98. De Castro WV, Mertens-Talcott S, Rubner A, et al. Variation of flavonoids and furanocoumarins in grapefruit juices: a potential source of variability in grapefruit juice-drug interaction studies. J Agric Food Chem. 2006;54:249–55.

    Article  PubMed  CAS  Google Scholar 

  99. Langer RM, Van Buren CT, Katz SM, et al. De novo hemolytic uremic syndrome after kidney transplantation in patients treated with cyclosporine a sirolimus combination. Transplantation. 2002;73(5):756–60.

    Article  CAS  PubMed  Google Scholar 

  100. Ekberg H, Tedesco-Silva H, Demirbas A, et al. Reduced exposure to calcineurin inhibitors in renal transplantation. N Engl J Med. 2007;357(25):2562–75.

    Article  CAS  PubMed  Google Scholar 

  101. Arns W, Diekmann F. Konsensus-Statement zu Umstellung und Therapieoptimierung nierentransplantierter Patienten mit Sirolimus: update 2005. Nieren Hochdruckkr. 2005;12:551–5.

    Google Scholar 

  102. Diekmann F, Campistol JM. Conversion from calcineurin inhibitors to sirolimus in chronic allograft nephropathy: benefits and risks. Nephrol Dial Transplant. 2006;21:562–8.

    Article  CAS  PubMed  Google Scholar 

  103. Saurina A, Campistol JM, Piera C, et al. Conversion from calcineurin inhibitors to sirolimus in chronic allograft dysfunction: changes in glomerular haemodynamics and proteinuria. Nephrol Dial Transplant. 2006;21(2):488–93.

    Article  CAS  PubMed  Google Scholar 

  104. Egidi MF, Cowan PA, Naseer A, et al. Conversion to sirolimus in solid organ transplantation: a single center experience. Transplant Proc. 2003;35:131S–7S.

    Article  CAS  PubMed  Google Scholar 

  105. Rummo OO, Carmellini M, Rostaing L, et al. ADHERE: randomized controlled trial comparing renal function in de novo kidney transplant recipients receiving prolonged-release tacrolimus plus mycophenolate mofetil or sirolimus. Transpl Int. 2017;30(1):83–95.

    Article  CAS  PubMed  Google Scholar 

  106. Diekmann F, Budde K, Oppenheimer F, et al. Predictors of success in conversion from calcineurin inhibitor to sirolimus in chronic allograft dysfunction. Am J Transplant. 2004;4:1869–75.

    Article  CAS  PubMed  Google Scholar 

  107. Van Gelder T, ter Meulen CG, Hené R, et al. Oral ulcers in kidney transplant recipients treated with sirolimus and mycophenolate mofetil. Transplantation. 2003;75:788–91.

    Article  PubMed  CAS  Google Scholar 

  108. Fricain JC, Cellerié K, Sibaud V, et al. Oral ulcers in kidney allograft recipients treated with sirolimus. Ann Dermatol Venereol. 2008;135(11):737–41.

    Article  PubMed  Google Scholar 

  109. Dharnidharka VR, Schnitzler MA, Chen J, et al. Differential risks for adverse outcomes 3 years after kidney transplantation based on initial immunosuppression regimen: a national study. Transpl Int. 2016;29(11):1226–36.

    Article  CAS  PubMed  Google Scholar 

  110. Morcos A, Nair S, Keane MP, et al. Interstitial pneumonitis is a frequent complication in liver transplant recipients treated with sirolimus. Ir J Med Sci. 2012;181(2):231–5.

    Article  CAS  PubMed  Google Scholar 

  111. Malyszko J, Glowinska I, Mysliwiec M. Treatment of anemia with erythropoietin-stimulating agents in kidney transplant recipients and chronic kidney disease-another drawback of immunosuppression? Transplant Proc. 2012;44(10):3013–6.

    Article  CAS  PubMed  Google Scholar 

  112. Tomlanovich SJ, Vincenti F. Sirolimus: defining nephrotoxicity in the renal transplant recipient. Clin J Am Soc Nephrol. 2007;2(2):198–9.

    Article  CAS  PubMed  Google Scholar 

  113. Pelletier R, Nadasdy T, Nadasdy G, et al. Acute renal failure following kidney transplantation associated with myoglobinuria in patients treated with rapamycin. Transplantation. 2006;82(5):645–50.

    Article  CAS  PubMed  Google Scholar 

  114. Campistol JM, Cockwell P, Diekmann F, et al. Practical recommendations for the early use of m-TOR inhibitors (sirolimus) in renal transplantation. Transpl Int. 2009;22(7):681–7.

    Article  CAS  PubMed  Google Scholar 

  115. Gatault P, Bertrand D, Büchler M, et al. Eight-year results of the Spiesser study, a randomized trial comparing de novo sirolimus and cyclosporine in renal transplantation. Transpl Int. 2016;29(1):41–50.

    Article  CAS  PubMed  Google Scholar 

  116. Zhu L, Ding T, Wang XX, et al. Effectiveness and safety of conversion therapy with the combination of sirolimus with low dose cyclosporine in renal transplantation recipients: a five-year clinical observation. Zhonghua Yi Xue Za Zhi. 2016;96(20):1556–61.

    CAS  PubMed  Google Scholar 

  117. Zimmerman KO, Wu H, Greenberg R, et al. Therapeutic drug monitoring, electronic health records, and pharmacokinetic modeling to evaluate sirolimus drug exposure-response relationships in renal transplant patients. Ther Drug Monit. 2016;38(5):600–6.

    Article  CAS  PubMed  Google Scholar 

  118. Ericson JE, Zimmerman KO, Gonzalez D, et al. A systematic literature review approach to estimate the therapeutic index of selected immunosuppressant drugs after renal transplantation. Ther Drug Monit. 2017;39(1):13–20.

    Article  CAS  PubMed  Google Scholar 

  119. Pizzo HP, Ettenger RB, Gjertson DW, et al. Sirolimus and tacrolimus coefficient of variation is associated with rejection, donor-specific antibodies, and nonadherence. Pediatr Nephrol. 2016;31(12):2345–52.

    Article  PubMed  Google Scholar 

  120. Khaled SK, Palmer JM, Herzog J, et al. Influence of absorption, distribution, metabolism, and excretion genomic variants on tacrolimus/sirolimus blood levels and graft-versus-host disease after allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2016;22(2):268–76.

    Article  CAS  PubMed  Google Scholar 

  121. EBPG Expert Group on Renal Transplantation. European best practice guidelines for renal transplantation. Section IV: Long-term management of the transplant recipient. IV.10. Pregnancy in renal transplant recipients. Nephrol Dial Transplant. 2002;17(Suppl 4):50–5.

    Google Scholar 

  122. Trepanier DJ, Gallant H, Legatt DF, et al. Rapamycin: distribution, pharmacokinetics and therapeutic range investigations: an update. Clin Biochem. 1998;31(5):345–51.

    Article  CAS  PubMed  Google Scholar 

  123. Davis DL, Soldin SJ. An immunophilin-binding assay for sirolimus. Clin Ther. 2000;22(Suppl B):B62–70.

    Article  CAS  PubMed  Google Scholar 

  124. Johnson-Davis KL, De S, Jimenez E, et al. Evaluation of the Abbott ARCHITECT i2000 sirolimus assay and comparison with the Abbott IMx sirolimus assay and an established liquid chromatography–tandem mass spectrometry method. Ther Drug Monit. 2011;33(4):453–9.

    Article  CAS  PubMed  Google Scholar 

  125. Morris RG, Salm P, Taylor PJ, et al. Comparison of the reintroduced MEIA assay with HPLC–MS/MS for the determination of whole-blood sirolimus from transplant recipients. Ther Drug Monit. 2006;28(2):164–8.

    Article  CAS  PubMed  Google Scholar 

  126. Volosov A, Napoli KL, Soldin SJ. Simultaneous simple and fast quantification of three major immunosuppressants by liquid chromatography–tandem mass-spectrometry. Clin Biochem. 2001;34(4):285–90.

    Article  CAS  PubMed  Google Scholar 

  127. Vethe NT, Gjerdalen LC, Bergan S. Determination of cyclosporine, tacrolimus, sirolimus and everolimus by liquid chromatography coupled to electrospray ionization and tandem mass spectrometry: assessment of matrix effects and assay performance. Scand J Clin Lab Investig. 2010;70(8):583–91.

    Article  CAS  Google Scholar 

  128. Van Hooff JP, Squifflet JP, Wlodarczyk Z, et al. A prospective randomized multicenter study of tacrolimus in combination with sirolimus in renal-transplant recipients. Transplantation. 2003;75(12):1934–9.

    Article  PubMed  CAS  Google Scholar 

  129. Kirchner GI, Jacobsen W, Deters M, et al. Fast quantification method for sirolimus and its major metabolites. Transplant Proc. 2001;33(1–2):1091–2.

    Article  CAS  PubMed  Google Scholar 

  130. Wallemacq PE, Vanbinst R, Asta S, et al. High-throughput liquid chromatography–tandem mass spectrometric analysis of sirolimus in whole blood. Clin Chem Lab Med. 2003;41(7):921–5.

    Article  CAS  PubMed  Google Scholar 

  131. Holt DW, Lee T, Johnston A. Measurement of sirolimus in whole blood using high-performance liquid chromatography with ultraviolet detection. Clin Ther. 2000;22(Suppl B):B38–48.

    Article  CAS  PubMed  Google Scholar 

  132. Maleki S, Graves S, Becker S, et al. Therapeutic monitoring of sirolimus in human whole-blood samples by high-performance liquid chromatography. Clin Ther. 2000;22(Suppl B):B25–37.

    Article  CAS  PubMed  Google Scholar 

  133. French DC, Saltzgueber M, Hicks DR, et al. HPLC assay with ultraviolet detection for therapeutic drug monitoring of sirolimus. Clin Chem. 2001;47(7):1316–9.

    CAS  PubMed  Google Scholar 

  134. Oellerich M, Armstrong VW. The role of therapeutic drug monitoring in individualizing immunosuppressive drug therapy: recent developments. Ther Drug Monit. 2006;28(6):720–5.

    Article  PubMed  Google Scholar 

  135. Becker S, Thiery J, Ceglarek U. Evaluation of a novel commercial assay for the determination of cyclosporine A, tacrolimus, sirolimus, and everolimus by liquid chromatography–tandem mass spectrometric assay. Ther Drug Monit. 2013;35(1):129–32.

    Article  CAS  PubMed  Google Scholar 

  136. Shi RZ, El Gierari el TM, Faix JD, et al. Rapid measurement of cyclosporine and sirolimus in whole blood by paper spray–tandem mass spectrometry. Clin Chem. 2016;62(1):295–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shery Jacob.

Ethics declarations

Funding

No sources of funding were used to conduct this study or prepare this manuscript.

Conflicts of interest

Shery Jacob and Anroop Nair have no conflicts of interest that are directly related to the content of this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jacob, S., Nair, A.B. A review on therapeutic drug monitoring of the mTOR class of immunosuppressants: everolimus and sirolimus. Drugs Ther Perspect 33, 290–301 (2017). https://doi.org/10.1007/s40267-017-0403-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40267-017-0403-0

Keywords

Navigation