Skip to main content

Advertisement

Log in

Clinical aspects of tacrolimus use in paediatric renal transplant recipients

  • Educational Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

The calcineurin inhibitor tacrolimus, cornerstone of most immunosuppressive regimens, is a drug with a narrow therapeutic window: underexposure can lead to allograft rejection and overexposure can result in an increased incidence of infections, toxicity and malignancies. Tacrolimus is metabolised in the liver and intestine by the cytochrome P450 3A (CYP3A) isoforms CYP3A4 and CYP3A5. This review focusses on the clinical aspects of tacrolimus pharmacodynamics, such as efficacy and toxicity. Factors affecting tacrolimus pharmacokinetics, including pharmacogenetics and the rationale for routine CYP3A5*1/*3 genotyping in prospective paediatric renal transplant recipients, are also reviewed. Therapeutic drug monitoring, including pre-dose concentrations and pharmacokinetic profiles with the available “reference values”, are discussed. Factors contributing to high intra-patient variability in tacrolimus exposure and its impact on clinical outcome are also reviewed. Lastly, suggestions for future research and clinical perspectives are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Filler G, Webb NJ, Milford DV, Watson AR, Gellermann J, Tyden G, Grenda R, Vondrak K, Hughes D, Offner G, Griebel M, Brekke IB, McGraw M, Balzar E, Friman S, Trompeter R (2005) Four-year data after pediatric renal transplantation: a randomized trial of tacrolimus vs. cyclosporin microemulsion. Pediatr Transplant 9:498–503

    CAS  PubMed  Google Scholar 

  2. Neu AM, Ho PL, Fine RN, Furth SL, Fivush BA (2003) Tacrolimus vs. cyclosporine a as primary immunosuppression in pediatric renal transplantation: a NAPRTCS study. Pediatr Transplant 7:217–222

    CAS  PubMed  Google Scholar 

  3. Knops N, Herman J, van Dyck M, Ramazani Y, Debbaut E, van Damme-Lombaerts R, Levtchenko E, van den Heuvel LP, Fieuws S, Kuypers D (2017) Tacrolimus dose requirements in paediatric renal allograft recipients are characterized by a biphasic course determined by age and bone maturation. Br J Clin Pharmacol 83:863–874

    CAS  PubMed  Google Scholar 

  4. Prytula AA, Cransberg K, Bouts AH, van Schaik RH, de Jong H, de Wildt SN, Mathot RA (2016) The effect of weight and CYP3A5 genotype on the population pharmacokinetics of tacrolimus in stable Paediatric renal transplant recipients. Clin Pharmacokinet 55:1129–1143

    CAS  PubMed  Google Scholar 

  5. Zhao W, Elie V, Roussey G, Brochard K, Niaudet P, Leroy V, Loirat C, Cochat P, Cloarec S, Andre JL, Garaix F, Bensman A, Fakhoury M, Jacqz-Aigrain E (2009) Population pharmacokinetics and pharmacogenetics of tacrolimus in de novo pediatric kidney transplant recipients. Clin Pharmacol Ther 86:609–618

    CAS  PubMed  Google Scholar 

  6. Knops N, Levtchenko E, van den Heuvel B, Kuypers D (2013) From gut to kidney: transporting and metabolizing calcineurin-inhibitors in solid organ transplantation. Int J Pharm 452:14–35

    CAS  PubMed  Google Scholar 

  7. Rusnak F, Mertz P (2000) Calcineurin: form and function. Physiol Rev 80:1483–1521

    CAS  PubMed  Google Scholar 

  8. Klee CB, Ren H, Wang X (1998) Regulation of the calmodulin-stimulated protein phosphatase, calcineurin. J Biol Chem 273:13367–13370

    CAS  PubMed  Google Scholar 

  9. Naesens M, Kuypers DR, Sarwal M (2009) Calcineurin inhibitor nephrotoxicity. Clin J Am Soc Nephrol 4:481–508

    CAS  PubMed  Google Scholar 

  10. Staatz CE, Tett SE (2004) Clinical pharmacokinetics and pharmacodynamics of tacrolimus in solid organ transplantation. Clin Pharmacokinet 43:623–653

    CAS  Google Scholar 

  11. [No authors listed] (1994) Randomised trial comparing tacrolimus (FK506) and cyclosporin in prevention of liver allograft rejection. European FK506 Multicentre Liver Study Group. Lancet 344:423–428

  12. Nakata Y, Yoshibayashi M, Yonemura T, Uemoto S, Inomata Y, Tanaka K, Furusho K (2000) Tacrolimus and myocardial hypertrophy. Transplantation 69:1960–1962

    CAS  PubMed  Google Scholar 

  13. Prytula A, Vandekerckhove K, Raes A, De Wolf D, Dehoorne J, Vande Walle J, De Bruyne R (2016) Tacrolimus predose concentration is associated with hypertension in pediatric liver transplant recipients. J Pediatr Gastroenterol Nutr 63:616–623

    CAS  PubMed  Google Scholar 

  14. Ikitimur B, Cosansu K, Karadag B, Cakmak HA, Avci BK, Erturk E, Seyahi N, Ongen Z (2015) Long-term impact of different immunosuppressive drugs on QT and PR intervals in renal transplant patients. Ann Noninvasive Electrocardiol 20:426–432

    PubMed  Google Scholar 

  15. Ogunseinde BA, Wimmers E, Washington B, Iyob M, Cropper T, Callender CO (2003) A case of tacrolimus (FK506)-induced pancreatitis and fatality 2 years postcadaveric renal transplant. Transplantation 76:448

    PubMed  Google Scholar 

  16. Hayes W, Boyle S, Carroll A, Bockenhauer D, Marks SD (2017) Hypomagnesemia and increased risk of new-onset diabetes mellitus after transplantation in pediatric renal transplant recipients. Pediatr Nephrol 32:879–884

    PubMed  Google Scholar 

  17. Burroughs TE, Swindle JP, Salvalaggio PR, Lentine KL, Takemoto SK, Bunnapradist S, Brennan DC, Schnitzler MA (2009) Increasing incidence of new-onset diabetes after transplant among pediatric renal transplant patients. Transplantation 88:367–373

    PubMed  PubMed Central  Google Scholar 

  18. Bonthuis M, van Stralen KJ, Jager KJ, Baiko S, Jahnukainen T, Laube GF, Podracka L, Seeman T, Tyerman K, Ulinski T, Groothoff JW, Schaefer F, Verrina E (2014) Dyslipidaemia in children on renal replacement therapy. Nephrol Dial Transplant 29:594–603

    CAS  PubMed  Google Scholar 

  19. Van Laecke S, Van Biesen W (2015) Hypomagnesaemia in kidney transplantation. Transplant Rev (Orlando) 29:154–160

    Google Scholar 

  20. Mohebbi N, Mihailova M, Wagner CA (2009) The calcineurin inhibitor FK506 (tacrolimus) is associated with transient metabolic acidosis and altered expression of renal acid-base transport proteins. Am J Physiol Ren Physiol 297:F499–F509

    CAS  Google Scholar 

  21. Georgiou GK, Dounousi E, Harissis HV (2016) Calcineurin inhibitors and male fertility after renal transplantation—a review. Andrologia 48:483–490

    CAS  PubMed  Google Scholar 

  22. Ojo AO, Held PJ, Port FK, Wolfe RA, Leichtman AB, Young EW, Arndorfer J, Christensen L, Merion RM (2003) Chronic renal failure after transplantation of a nonrenal organ. N Engl J Med 349:931–940

    CAS  PubMed  Google Scholar 

  23. Lucey MR, Abdelmalek MF, Gagliardi R, Granger D, Holt C, Kam I, Klintmalm G, Langnas A, Shetty K, Tzakis A, Woodle ES (2005) A comparison of tacrolimus and cyclosporine in liver transplantation: effects on renal function and cardiovascular risk status. Am J Transplant 5:1111–1119

    CAS  PubMed  Google Scholar 

  24. Wu Z, Xu Q, Qiu X, Jiao Z, Zhang M, Zhong M (2017) FOXP3 rs3761548 polymorphism is associated with tacrolimus-induced acute nephrotoxicity in renal transplant patients. Eur J Clin Pharmacol 73:39–47

    CAS  PubMed  Google Scholar 

  25. Nankivell BJ, Borrows RJ, Fung CL, O'Connell PJ, Allen RD, Chapman JR (2003) The natural history of chronic allograft nephropathy. N Engl J Med 349:2326–2333

    CAS  PubMed  Google Scholar 

  26. Stegall MD, Park WD, Larson TS, Gloor JM, Cornell LD, Sethi S, Dean PG, Prieto M, Amer H, Textor S, Schwab T, Cosio FG (2011) The histology of solitary renal allografts at 1 and 5 years after transplantation. Am J Transplant 11:698–707

    CAS  PubMed  Google Scholar 

  27. Naesens M, Lerut E, de Jonge H, Van Damme B, Vanrenterghem Y, Kuypers DR (2009) Donor age and renal P-glycoprotein expression associate with chronic histological damage in renal allografts. J Am Soc Nephrol 20:2468–2480

    PubMed  PubMed Central  Google Scholar 

  28. van Gelder T, van Schaik RH, Hesselink DA (2014) Pharmacogenetics and immunosuppressive drugs in solid organ transplantation. Nat Rev Nephrol 10:725–731

    PubMed  Google Scholar 

  29. Scott LJ, McKeage K, Keam SJ, Plosker GL (2003) Tacrolimus: a further update of its use in the management of organ transplantation. Drugs 63:1247–1297

    CAS  PubMed  Google Scholar 

  30. Zhao W, Fakhoury M, Jacqz-Aigrain E (2010) Developmental pharmacogenetics of immunosuppressants in pediatric organ transplantation. Ther Drug Monit 32:688–699

    CAS  PubMed  Google Scholar 

  31. Venkataramanan R, Swaminathan A, Prasad T, Jain A, Zuckerman S, Warty V, McMichael J, Lever J, Burckart G, Starzl T (1995) Clinical pharmacokinetics of tacrolimus. Clin Pharmacokinet 29:404–430

    CAS  PubMed  Google Scholar 

  32. Plosker GL, Foster RH (2000) Tacrolimus: a further update of its pharmacology and therapeutic use in the management of organ transplantation. Drugs 59:323–389

    CAS  PubMed  Google Scholar 

  33. Mancinelli LM, Frassetto L, Floren LC, Dressler D, Carrier S, Bekersky I, Benet LZ, Christians U (2001) The pharmacokinetics and metabolic disposition of tacrolimus: a comparison across ethnic groups. Clin Pharmacol Ther 69:24–31

    CAS  PubMed  Google Scholar 

  34. Bjorkman S (2006) Prediction of cytochrome p450-mediated hepatic drug clearance in neonates, infants and children : how accurate are available scaling methods? Clin Pharmacokinet 45:1–11

    PubMed  Google Scholar 

  35. Naesens M, Salvatierra O, Li L, Kambham N, Concepcion W, Sarwal M (2008) Maturation of dose-corrected tacrolimus predose trough levels in pediatric kidney allograft recipients. Transplantation 85:1139–1145

    CAS  PubMed  Google Scholar 

  36. Hebert MF, Zheng S, Hays K, Shen DD, Davis CL, Umans JG, Miodovnik M, Thummel KE, Easterling TR (2013) Interpreting tacrolimus concentrations during pregnancy and postpartum. Transplantation 95:908–915

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Storset E, Holford N, Midtvedt K, Bremer S, Bergan S, Asberg A (2014) Importance of hematocrit for a tacrolimus target concentration strategy. Eur J Clin Pharmacol 70:65–77

    PubMed  Google Scholar 

  38. Zhao W, Fakhoury M, Baudouin V, Storme T, Maisin A, Deschenes G, Jacqz-Aigrain E (2013) Population pharmacokinetics and pharmacogenetics of once daily prolonged-release formulation of tacrolimus in pediatric and adolescent kidney transplant recipients. Eur J Clin Pharmacol 69:189–195

    CAS  PubMed  Google Scholar 

  39. Jacobo-Cabral CO, Garcia-Roca P, Romero-Tejeda EM, Reyes H, Medeiros M, Castaneda-Hernandez G, Troconiz IF (2015) Population pharmacokinetic analysis of tacrolimus in Mexican paediatric renal transplant patients: role of CYP3A5 genotype and formulation. Br J Clin Pharmacol 80:630–641

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Andrews LM, Hesselink DA, van Gelder T, Koch BCP, Cornelissen EAM, Bruggemann RJM, van Schaik RHN, de Wildt SN, Cransberg K, de Winter BCM (2017) A population pharmacokinetic model to predict the individual starting dose of tacrolimus following pediatric renal transplantation. Clin Pharmacokinet. https://doi.org/10.1007/s40262-017-0567-8

    PubMed Central  Google Scholar 

  41. van Duijnhoven EM, Boots JM, Christiaans MH, Stolk LM, Undre NA, van Hooff JP (2003) Increase in tacrolimus trough levels after steroid withdrawal. Transpl Int 16:721–725

    PubMed  Google Scholar 

  42. Tonshoff B, David-Neto E, Ettenger R, Filler G, van Gelder T, Goebel J, Kuypers DR, Tsai E, Vinks AA, Weber LT, Zimmerhackl LB (2011) Pediatric aspects of therapeutic drug monitoring of mycophenolic acid in renal transplantation. Transplant Rev (Orlando) 25:78–89

    Google Scholar 

  43. Braun F, Schocklmann H, Ziegler E, Kunzendorf U, Armstrong VW, Renders L (2009) Increased mycophenolic acid exposure in stable kidney transplant recipients on tacrolimus as compared with those on sirolimus: implications for pharmacokinetics. Clin Pharmacol Ther 86:411–415

    CAS  PubMed  Google Scholar 

  44. Grenda R, Watson A, Trompeter R, Tonshoff B, Jaray J, Fitzpatrick M, Murer L, Vondrak K, Maxwell H, van Damme-Lombaerts R, Loirat C, Mor E, Cochat P, Milford DV, Brown M, Webb NJ (2010) A randomized trial to assess the impact of early steroid withdrawal on growth in pediatric renal transplantation: the TWIST study. Am J Transplant 10:828–836

    CAS  PubMed  Google Scholar 

  45. van Gelder T (2002) Drug interactions with tacrolimus. Drug Saf 25:707–712

    PubMed  Google Scholar 

  46. Kidney Disease: Improving Global Outcomes Transplant Work G (2009) KDIGO clinical practice guideline for the care of kidney transplant recipients. Am J Transplant 9[Suppl 3]:S1–155

    Google Scholar 

  47. Bax K, Tijssen J, Rieder MJ, Filler G (2014) Rapid resolution of tacrolimus intoxication-induced AKI with a corticosteroid and phenytoin. Ann Pharmacother 48:1525–1528

    PubMed  Google Scholar 

  48. Birdwell KA, Decker B, Barbarino JM, Peterson JF, Stein CM, Sadee W, Wang D, Vinks AA, He Y, Swen JJ, Leeder JS, van Schaik R, Thummel KE, Klein TE, Caudle KE, MacPhee IA (2015) Clinical pharmacogenetics implementation consortium (CPIC) guidelines for CYP3A5 genotype and tacrolimus dosing. Clin Pharmacol Ther 98:19–24

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Hustert E, Haberl M, Burk O, Wolbold R, He YQ, Klein K, Nuessler AC, Neuhaus P, Klattig J, Eiselt R, Koch I, Zibat A, Brockmoller J, Halpert JR, Zanger UM, Wojnowski L (2001) The genetic determinants of the CYP3A5 polymorphism. Pharmacogenetics 11:773–779

    CAS  PubMed  Google Scholar 

  50. Kuehl P, Zhang J, Lin Y, Lamba J, Assem M, Schuetz J, Watkins PB, Daly A, Wrighton SA, Hall SD, Maurel P, Relling M, Brimer C, Yasuda K, Venkataramanan R, Strom S, Thummel K, Boguski MS, Schuetz E (2001) Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat Genet 27:383–391

    CAS  PubMed  Google Scholar 

  51. Hesselink DA, van Schaik RH, van der Heiden IP, van der Werf M, Gregoor PJ, Lindemans J, Weimar W, van Gelder T (2003) Genetic polymorphisms of the CYP3A4, CYP3A5, and MDR-1 genes and pharmacokinetics of the calcineurin inhibitors cyclosporine and tacrolimus. Clin Pharmacol Ther 74:245–254

    CAS  PubMed  Google Scholar 

  52. Oetting WS, Schladt DP, Guan W, Miller MB, Remmel RP, Dorr C, Sanghavi K, Mannon RB, Herrera B, Matas AJ, Salomon DR, Kwok PY, Keating BJ, Israni AK, Jacobson PA, De KAFI (2016) Genomewide association study of tacrolimus concentrations in African American kidney transplant recipients identifies multiple CYP3A5 alleles. Am J Transplant 16:574–582

    CAS  Google Scholar 

  53. Andrews LM, De Winter BC, Van Gelder T, Hesselink DA (2016) Consideration of the ethnic prevalence of genotypes in the clinical use of tacrolimus. Pharmacogenomics 17:1737–1740

    CAS  PubMed  Google Scholar 

  54. Gijsen V, Mital S, van Schaik RH, Soldin OP, Soldin SJ, van der Heiden IP, Nulman I, Koren G, de Wildt SN (2011) Age and CYP3A5 genotype affect tacrolimus dosing requirements after transplant in pediatric heart recipients. J Heart Lung Transplant 30:1352–1359

    PubMed  PubMed Central  Google Scholar 

  55. de Wildt SN, van Schaik RH, Soldin OP, Soldin SJ, Brojeni PY, van der Heiden IP, Parshuram C, Nulman I, Koren G (2011) The interactions of age, genetics, and disease severity on tacrolimus dosing requirements after pediatric kidney and liver transplantation. Eur J Clin Pharmacol 67:1231–1241

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Lalan S, Abdel-Rahman S, Gaedigk A, Leeder JS, Warady BA, Dai H, Blowey D (2014) Effect of CYP3A5 genotype, steroids, and azoles on tacrolimus in a pediatric renal transplant population. Pediatr Nephrol 29:2039–2049

    PubMed  Google Scholar 

  57. Haufroid V, Mourad M, Van Kerckhove V, Wawrzyniak J, De Meyer M, Eddour DC, Malaise J, Lison D, Squifflet JP, Wallemacq P (2004) The effect of CYP3A5 and MDR1 (ABCB1) polymorphisms on cyclosporine and tacrolimus dose requirements and trough blood levels in stable renal transplant patients. Pharmacogenetics 14:147–154

    CAS  PubMed  Google Scholar 

  58. Kuypers DR, de Loor H, Naesens M, Coopmans T, de Jonge H (2014) Combined effects of CYP3A5*1, POR*28, and CYP3A4*22 single nucleotide polymorphisms on early concentration-controlled tacrolimus exposure in de-novo renal recipients. Pharmacogenet Genomics 24:597–606

    CAS  PubMed  Google Scholar 

  59. Elens L, van Gelder T, Hesselink DA, Haufroid V, van Schaik RH (2013) CYP3A4*22: promising newly identified CYP3A4 variant allele for personalizing pharmacotherapy. Pharmacogenomics 14:47–62

    CAS  PubMed  Google Scholar 

  60. Gijsen VM, van Schaik RH, Soldin OP, Soldin SJ, Nulman I, Koren G, de Wildt SN (2014) P450 oxidoreductase *28 (POR*28) and tacrolimus disposition in pediatric kidney transplant recipients—a pilot study. Ther Drug Monit 36:152–158

    CAS  PubMed  Google Scholar 

  61. Elens L, Bouamar R, Hesselink DA, Haufroid V, van der Heiden IP, van Gelder T, van Schaik RH (2011) A new functional CYP3A4 intron 6 polymorphism significantly affects tacrolimus pharmacokinetics in kidney transplant recipients. Clin Chem 57:1574–1583

    CAS  PubMed  Google Scholar 

  62. de Jonge H, Metalidis C, Naesens M, Lambrechts D, Kuypers DR (2011) The P450 oxidoreductase *28 SNP is associated with low initial tacrolimus exposure and increased dose requirements in CYP3A5-expressing renal recipients. Pharmacogenomics 12:1281–1291

    Google Scholar 

  63. MacPhee IA, Fredericks S, Tai T, Syrris P, Carter ND, Johnston A, Goldberg L, Holt DW (2004) The influence of pharmacogenetics on the time to achieve target tacrolimus concentrations after kidney transplantation. Am J Transplant 4:914–919

    CAS  PubMed  Google Scholar 

  64. Shuker N, Bouamar R, van Schaik RH, Clahsen-van Groningen MC, Damman J, Baan CC, van de Wetering J, Rowshani AT, Weimar W, van Gelder T, Hesselink DA (2015) A randomized controlled trial comparing the efficacy of CYP3A5 genotype-based with bodyweight-based tacrolimus dosing after living donor kidney transplantation. Am J Transplant 16:2085–2096

    Google Scholar 

  65. Prytula A, Cransberg K, Raes A (2017) CYP3A4 is a crosslink between vitamin D and calcineurin inhibitors in solid organ transplant recipients: implications for bone health. Pharmacogenomics J 17:481–487

    CAS  PubMed  Google Scholar 

  66. Armendariz Y, Pou L, Cantarell C, Lopez R, Perello M, Capdevila L (2005) Evaluation of a limited sampling strategy to estimate area under the curve of tacrolimus in adult renal transplant patients. Ther Drug Monit 27:431–434

    CAS  PubMed  Google Scholar 

  67. Zhao W, Fakhoury M, Baudouin V, Maisin A, Deschenes G, Jacqz-Aigrain E (2011) Limited sampling strategy for estimating individual exposure of tacrolimus in pediatric kidney transplant patients. Ther Drug Monit 33:681–687

    CAS  PubMed  Google Scholar 

  68. Lee MN, Butani L (2007) Improved pharmacokinetic monitoring of tacrolimus exposure after pediatric renal transplantation. Pediatr Transplant 11:388–393

    CAS  PubMed  Google Scholar 

  69. Claeys T, Van Dyck M, Van Damme-Lombaerts R (2010) Pharmacokinetics of tacrolimus in stable paediatric renal transplant recipients. Pediatr Nephrol 25:335–342

    PubMed  Google Scholar 

  70. Stifft F, Undre N, van Hooff JP, Christiaans MH (2016) Effect of breakfast on the exposure of the once-daily tacrolimus formulation in stable kidney transplant recipients. Ther Drug Monit 38:456–462

    CAS  PubMed  Google Scholar 

  71. Bekersky I, Dressler D, Mekki QA (2001) Effect of low- and high-fat meals on tacrolimus absorption following 5 mg single oral doses to healthy human subjects. J Clin Pharmacol 41:176–182

    CAS  PubMed  Google Scholar 

  72. Staatz CE, Taylor PJ, Tett SE (2002) Comparison of an ELISA and an LC/MS/MS method for measuring tacrolimus concentrations and making dosage decisions in transplant recipients. Ther Drug Monit 24:607–615

    CAS  PubMed  Google Scholar 

  73. Filler G, Smith N (2014) The need for tacrolimus assay standardization. Ther Drug Monit 36:693–695

    PubMed  Google Scholar 

  74. Ekberg H, Tedesco-Silva H, Demirbas A, Vitko S, Nashan B, Gurkan A, Margreiter R, Hugo C, Grinyo JM, Frei U, Vanrenterghem Y, Daloze P, Halloran PF (2007) Reduced exposure to calcineurin inhibitors in renal transplantation. New Engl J Med 357:2562–2575

    CAS  PubMed  Google Scholar 

  75. Wallemacq P, Armstrong VW, Brunet M, Haufroid V, Holt DW, Johnston A, Kuypers D, Le Meur Y, Marquet P, Oellerich M, Thervet E, Toenshoff B, Undre N, Weber LT, Westley IS, Mourad M (2009) Opportunities to optimize tacrolimus therapy in solid organ transplantation: report of the European consensus conference. Ther Drug Monit 31:139–152

    CAS  PubMed  Google Scholar 

  76. Davis S, Gralla J, Klem P, Tong S, Wedermyer G, Freed B, Wiseman A, Cooper JE (2017) Lower tacrolimus exposure and time in therapeutic range increase the risk of de novo donor-specific antibodies in the first year of kidney transplantation. Am J Transplant. https://doi.org/10.1111/ajt.14504

    PubMed  Google Scholar 

  77. Grenda R, Watson A, Vondrak K, Webb NJ, Beattie J, Fitzpatrick M, Saleem MA, Trompeter R, Milford DV, Moghal NE, Hughes D, Perner F, Friman S, Van Damme-Lombaerts R, Janssen F (2006) A prospective, randomized, multicenter trial of tacrolimus-based therapy with or without basiliximab in pediatric renal transplantation. Am J Transplant 6:1666–1672

    CAS  PubMed  Google Scholar 

  78. Hocker B, Zencke S, Pape L, Krupka K, Koster L, Fichtner A, Dello Strologo L, Guzzo I, Topaloglu R, Kranz B, Konig J, Bald M, Webb NJ, Noyan A, Dursun H, Marks S, Ozcakar ZB, Thiel F, Billing H, Pohl M, Fehrenbach H, Schnitzler P, Bruckner T, Ahlenstiel-Grunow T, Tonshoff B (2016) Impact of everolimus and low-dose cyclosporin on cytomegalovirus replication and disease in pediatric renal transplantation. Am J Transplant 16:921–929

    CAS  PubMed  Google Scholar 

  79. Martial LC, Verstegen RH, Cornelissen EA, Aarnoutse RE, Schreuder MF, Bruggemann RJ (2016) A preliminary study searching for the right dose of tacrolimus in very young (≤ 4 years) renal transplant patients. J Pharm Pharmacol 68:1366–1372

    CAS  PubMed  Google Scholar 

  80. Brunet M, Shipkova M, van Gelder T, Wieland E, Sommerer C, Budde K, Haufroid V, Christians U, Lopez-Hoyos M, Barten MJ, Bergan S, Picard N, Millan Lopez O, Marquet P, Hesselink DA, Noceti O, Pawinski T, Wallemacq P, Oellerich M (2016) Barcelona consensus on biomarker-based immunosuppressive drugs management in solid organ transplantation. Ther Drug Monit 38[Suppl 1]:S1–20

    PubMed  Google Scholar 

  81. Jackson JA, Kim EJ, Begley B, Cheeseman J, Harden T, Perez SD, Thomas S, Warshaw B, Kirk AD (2011) Urinary chemokines CXCL9 and CXCL10 are noninvasive markers of renal allograft rejection and BK viral infection. Am J Transplant 11:2228–2234

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Kim JS, Aviles DH, Silverstein DM, Leblanc PL, Matti Vehaskari V (2005) Effect of age, ethnicity, and glucocorticoid use on tacrolimus pharmacokinetics in pediatric renal transplant patients. Pediatr Transplant 9:162–169

    CAS  PubMed  Google Scholar 

  83. Montini G, Ujka F, Varagnolo C, Ghio L, Ginevri F, Murer L, Thafam BS, Carasi C, Zacchello G, Plebani M (2006) The pharmacokinetics and immunosuppressive response of tacrolimus in paediatric renal transplant recipients. Pediatr Nephrol 21:719–724

    PubMed  Google Scholar 

  84. Shuker N, van Gelder T, Hesselink DA (2015) Intra-patient variability in tacrolimus exposure: causes, consequences for clinical management. Transplant Rev (Orlando) 29:78–84

    Google Scholar 

  85. Hochleitner BW, Bosmuller C, Nehoda H, Fruhwirt M, Simma B, Ellemunter H, Steurer W, Hochleitner EO, Konigsrainer A, Margreiter R (2001) Increased tacrolimus levels during diarrhea. Transpl Int 14:230–233

    CAS  PubMed  Google Scholar 

  86. van Gelder T, Substitution EACoG (2011) European Society for Organ Transplantation Advisory Committee recommendations on generic substitution of immunosuppressive drugs. Transpl Int 24:1135–1141

    PubMed  Google Scholar 

  87. Medeiros M, Lumini J, Stern N, Castaneda-Hernandez G, Filler G (2017) Generic immunosuppressants. Pediatr Nephrol. https://doi.org/10.1007/s00467-017-3735-z

    PubMed  Google Scholar 

  88. Naicker D, Reed PW, Ronaldson J, Kara T, Wong W, Prestidge C (2017) Nationwide conversion to generic tacrolimus in pediatric kidney transplant recipients. Pediatr Nephrol 32:2125–2131

    PubMed  Google Scholar 

  89. Abdulnour HA, Araya CE, Dharnidharka VR (2010) Comparison of generic tacrolimus and Prograf drug levels in a pediatric kidney transplant program: brief communication. Pediatr Transplant 14:1007–1011

    PubMed  Google Scholar 

  90. Pollock-Barziv SM, Finkelstein Y, Manlhiot C, Dipchand AI, Hebert D, Ng VL, Solomon M, McCrindle BW, Grant D (2010) Variability in tacrolimus blood levels increases the risk of late rejection and graft loss after solid organ transplantation in older children. Pediatr Transplant 14:968–975

    PubMed  Google Scholar 

  91. Smith JM, Ho PL, McDonald RA, North American Pediatric Renal Transplant Cooperative S (2002) Renal transplant outcomes in adolescents: a report of the north American pediatric renal transplant cooperative study. Pediatr Transplant 6:493–499

    PubMed  Google Scholar 

  92. Van Arendonk KJ, James NT, Boyarsky BJ, Garonzik-Wang JM, Orandi BJ, Magee JC, Smith JM, Colombani PM, Segev DL (2013) Age at graft loss after pediatric kidney transplantation: exploring the high-risk age window. Clin J Am Soc Nephrol 8:1019–1026

    PubMed  PubMed Central  Google Scholar 

  93. Vanhove T, Vermeulen T, Annaert P, Lerut E, Kuypers DR (2016) High intrapatient variability of tacrolimus concentrations predicts accelerated progression of chronic histologic lesions in renal recipients. Am J Transplant 16:2954–2963

    CAS  PubMed  Google Scholar 

  94. Borra LC, Roodnat JI, Kal JA, Mathot RA, Weimar W, van Gelder T (2010) High within-patient variability in the clearance of tacrolimus is a risk factor for poor long-term outcome after kidney transplantation. Nephrol Dial Transplant. 25(8):2757–2763.

    CAS  Google Scholar 

  95. Prytula AA, Bouts AH, Mathot RA, van Gelder T, Croes LK, Hop W, Cransberg K (2012) Intra-patient variability in tacrolimus trough concentrations and renal variability in the clearance of tacrolimus is a risk factor for poor long-term outcome after kidney transplantation. Nephrol Dial Transplant 25:2757–2763

    Google Scholar 

  96. O'Regan JA, Canney M, Connaughton DM, O'Kelly P, Williams Y, Collier G, deFreitas DG, O'Seaghdha CM, Conlon PJ (2015) Tacrolimus trough-level variability predicts long-term allograft survival following kidney transplantation. J Nephrol 29:269–276

    PubMed  Google Scholar 

  97. Rodrigo E, Segundo DS, Fernandez-Fresnedo G, Lopez-Hoyos M, Benito A, Ruiz JC, de Cos MA, Arias M (2016) Within-patient variability in tacrolimus blood levels predicts kidney graft loss and donor-specific antibody development. Transplantation 100:2479-2485. Function decline in pediatric renal transplant recipients. Pediatr Transplant 16:613–618

    Google Scholar 

  98. Claes A, Decorte A, Levtchenko E, Knops N, Dobbels F (2014) Facilitators and barriers of medication adherence in pediatric liver and kidney transplant recipients: a mixed-methods study. Prog Transplant 24:311–321

    PubMed  Google Scholar 

  99. Kuypers DR, Peeters PC, Sennesael JJ, Kianda MN, Vrijens B, Kristanto P, Dobbels F, Vanrenterghem Y, Kanaan N, Team AS (2013) Improved adherence to tacrolimus once-daily formulation in renal recipients: a randomized controlled trial using electronic monitoring. Transplantation 95:333–340

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnieszka Prytuła.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Answers: 1. a; 2. d; 3. d; 4. b; 5. c

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prytuła, A., van Gelder, T. Clinical aspects of tacrolimus use in paediatric renal transplant recipients. Pediatr Nephrol 34, 31–43 (2019). https://doi.org/10.1007/s00467-018-3892-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-018-3892-8

Keywords

Navigation