Skip to main content
Log in

Checkpoint inhibitors for the treatment of non-small-cell lung cancer: news from the 2016 European Society for Medical Oncology Annual Congress

  • Practical Issues and Updates
  • Published:
Drugs & Therapy Perspectives Aims and scope Submit manuscript

Abstract

Immune checkpoint inhibitors that target interactions between tumour cells, antigen-presenting cells and T cells have revolutionized treatment algorithms for a number of cancers, including advanced or metastatic non-small cell lung cancer (NSCLC), a malignancy with an abysmally low long-term survival rate. This report highlights information presented at the 2016 European Society for Medical Oncology Annual Congress, with a focus on selected presentations on the latest developments in the field of immune checkpoint inhibition for the treatment of NSCLC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66(1):7–30.

    Article  PubMed  Google Scholar 

  2. Heist RS, Engelman JA. SnapShot: non-small cell lung cancer. Cancer Cell. 2012;21(3):448.e2.

  3. Bonomi P, Kim K, Fairclough D, et al. Comparison of survival and quality of life in advanced non-small-cell lung cancer patients treated with two dose levels of paclitaxel combined with cisplatin versus etoposide with cisplatin: results of an Eastern Cooperative Oncology Group trial. J Clin Oncol. 2000;18(3):623–31.

    CAS  PubMed  Google Scholar 

  4. Schiller JH, Harrington D, Belani CP, et al. Comparison of four chemotherapy regimens for advanced non-small-cell lung cancer. N Engl J Med. 2002;346(2):92–8.

    Article  CAS  PubMed  Google Scholar 

  5. Hirsch FR, Suda K, Wiens J, et al. New and emerging targeted treatments in advanced non-small-cell lung cancer. Lancet. 2016;388(10048):1012–24.

    Article  PubMed  Google Scholar 

  6. Zitvogel L, Tesniere A, Kroemer G. Cancer despite immunosurveillance: immunoselection and immunosubversion. Nat Rev Immunol. 2006;6(10):715–27.

    Article  CAS  PubMed  Google Scholar 

  7. Dunn GP, Bruce AT, Ikeda H, et al. Cancer immunoediting: from immunoserveillance to tumor escape. Nat Immunol. 2002;3(11):991–8.

    Article  CAS  PubMed  Google Scholar 

  8. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12(4):252–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kim MY, Koh J, Kim S, et al. Clinicopathological analysis of PD-L1 and PD-L2 expression in pulmonary squamous cell carcinoma: comparison with tumor-infiltrating T cells and the status of oncogenic drivers. Lung Cancer. 2015;88(1):24–33.

    Article  PubMed  Google Scholar 

  10. Calles A, Liao X, Sholl LM, et al. Expression of PD-1 and Its ligands, PD-L1 and PD-L2, in smokers and never smokers with KRAS-mutant lung cancer. J Thorac Oncol. 2015;10:1726–35.

    Article  CAS  PubMed  Google Scholar 

  11. Opdivo (nivolumab) injection, for intravenous use: US prescribing Information. Princeton: Bristol-Meyers Squibb Company; 2016.

  12. Opdivo (nivolumab) concentrate for solution for infusion: summary of product characteristics. London: European Medicines Agency; 2016.

  13. Keytruda® (permbrolizumab) for injection for intravenous use: US prescribing Information. Whitehouse Station: Merck Sharp & Dohme Corp.; 2016.

  14. Keytruda (pembrolizumab) powder for concentrate for solution for infusion: summary of product characteristics. London: European Medicines Agency; 2016.

  15. Tecentriq® (atezolizumab) injection, for intravenous use: US prescribing Information. South San Francisco: Genentech Inc.; 2016.

  16. Leventakos K, Mansfield AS. Advances in the treatment of non-small cell lung cancer: focus on nivolumab, pembrolizumab, and atezolizumab. Biodrugs. 2016;30(5):397–405.

    Article  CAS  PubMed  Google Scholar 

  17. Langer CJ. Randomized, phase 2 study of carboplatin and pemetrexed with or without pembrolizumab as first-line therapy for advanced NSCLC: KEYNOTE-021 cohort G [abstract no. LBA46_PR]. Ann Oncol. 2016;27(Suppl 6).

  18. Langer CJ, Gadgeel SM, Borghaei H, et al. Carboplatin and pemetrexed with or without pembrolizumab for advanced, non-squamous non-small-cell lung cancer: a randomised, phase 2 cohort of the open-label KEYNOTE-021 study. Lancet Oncol. 2016;17(11):1497–508.

    Article  CAS  PubMed  Google Scholar 

  19. Reck M. KEYNOTE-024: pembrolizumab (pembro) vs platinum-based chemotherapy (chemo) as first-line therapy for advanced NSCLC with a PD-L1 tumor proportion score (TPS) ≥50% [abstract no. LBA8_PR]. Ann Oncol. 2016;27(Suppl 6).

  20. Reck M, Rodriguez-Abreu D, Robinson AG, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med. 2016;375(19):1823–33.

    Article  CAS  PubMed  Google Scholar 

  21. Socinski M. CheckMate 026: a phase 3 trial of nivolumab vs investigator’s choice (IC) of platinum-based doublet chemotherapy (PT-DC) as first-line therapy for stage IV/recurrent Programmed Death Ligand 1 (PD-L1)−positive NSCLC [abstract no. LBA7_PR]. Ann Oncol. 2016;27(Suppl 6).

  22. Merck Sharp & Dohme Corp. Study of platinum+pemetrexed chemotherapy with or without pembrolizumab (MK-3475) in participants with first line metastatic non-squamous non-small cell lung cancer (MK-3475-189/KEYNOTE-189). [ClinicalTrials.gov identifier NCT002578680]. US National Institutes of Health. Clinical Trials.gov. https://clinicaltrials.gov/ct2/show/NCT02578680. Accessed 2 Dec 2016.

  23. Merck Sharp & Dohme Corp. A study of carboplatin-paclitaxel/Nab-paclitaxel chemotherapy with or without pembrolizumab (MK-3475) in adults with first line metastatic squamous non-small cell lung cancer (MK-3475-407/KEYNOTE-407). [ClinicalTrials.gov identifier NCT02775435]. US National Institutes of Health. Clinical Trials.gov. https://clinicaltrials.gov/ct2/show/NCT02775435. Accessed 2 Dec 2016.

  24. Garon EB, Rizvi NA, Hui R, et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med. 2015;372(21):2018–28.

    Article  PubMed  Google Scholar 

  25. Herbst R. Pembrolizumab (pembro) vs docetaxel (doce) for previously treated, PD-L1-expressing NSCLC: updated outcomes of KEYNOTE-010 [abstract no. LBA48_PR]. Ann Oncol. 2016;27(Suppl 6).

  26. Herbst RS, Baas P, Kim D-W, et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet. 2016;387(10027):1540–50.

    Article  CAS  PubMed  Google Scholar 

  27. Gettinger SN, Horn L, Gandhi L, et al. Overall survival and long-term safety of nivolumab (anti-programmed death 1 antibody, BMS-936558, ONO-4538) in patients with previously treated advanced non-small-cell lung cancer. J Clin Oncol. 2015;33(18):2004–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rizvi NA, Mazières J, Planchard D, et al. Activity and safety of nivolumab, an anti-PD-1 immune checkpoint inhibitor, for patients with advanced, refractory squamous non-small-cell lung cancer (CheckMate 063): a phase 2, single-arm trial. Lancet Oncol. 2015;16(3):257–65.

    Article  CAS  PubMed  Google Scholar 

  29. Brahmer J, Reckamp KL, Baas P, et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med. 2015;373(2):123–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Barlesi F. Long-term outcomes with nivolumab (Nivo) vs docetaxel (Doc) in patients (Pts) with advanced (Adv) NSCLC: CheckMate 017 and CheckMate 057 2-y update [abstract no. 1215PD]. Ann Oncol. 2016;27(Suppl 6).

  31. Borghaei H, Paz-Ares L, Horn L, et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med. 2015;373(17):1627–39.

    Article  CAS  PubMed  Google Scholar 

  32. Gettinger S, Rizvi NA, Chow LQ, et al. Nivolumab monotherapy for first-line treatment of advanced non-small-cell lung cancer. J Clin Oncol. 2016;34(25):2980–7.

    Article  CAS  PubMed  Google Scholar 

  33. Fehrenbacher L, Spira A, Ballinger M, et al. Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): a multicentre, open-label, phase 2 randomised controlled trial. Lancet. 2016;387(10030):1837–46.

    Article  CAS  PubMed  Google Scholar 

  34. Barlesi F. Primary analysis from OAK, a randomized phase III study comparing atezolizumab with docetaxel in 2L/3L NSCLC [abstract no. LBA44_PR]. Ann Oncol. 2016;27(Suppl 6).

  35. Gulley JL. Avelumab (MSB0010718C), an anti-PD-L1 antibody, in advanced NSCLC patients: A phase 1b, open-label expansion trial in patients progressing after platinum-based chemotherapy [abstract no. 8034]. J Clin Oncol. 2016;33(Suppl).

  36. Antonia SJ. Phase 1/2 study of the safety and clinical activity of durvalumab in patients with non-small cell lung cancer (NSCLC) [abstract no. 1216PD]. Ann Oncol. 2016;27(Suppl 6).

  37. Nguyen LT, Ohashi PS. Clinical blockade of PD1 and LAG3: potential mechanisms of action. Nat Rev Immunol. 2015;15(1):45–56.

    Article  CAS  PubMed  Google Scholar 

  38. Kerr KM, Nicolson MC. Non-small cell lung cancer, PD-L1, and the pathologist. Arch Pathol Lab Med. 2016;140(3):249–54.

    Article  PubMed  Google Scholar 

  39. Grigg C, Rizvi NA. PD-L1 biomarker testing for non-small cell lung cancer: truth or fiction? J Immunother Cancer. 2016;4:48.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Sorensen SF, Zhou W, Dolled-Filhart M, et al. PD-L1 expression and survival among patients with advanced non-small cell lung cancer treated with chemotherapy. Transl Oncol. 2016;9(1):64–9.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kallergi G. Evaluation of PD-1 and PD-L1 expression on CTCs isolated from non-small cell lung cancer (NSCLC) tumor patients [abstract no. 73P]. Ann Oncol. 2016;27(Suppl 6).

  42. Graf R. PD-L1 expression on circulating CD45(-) cells is an independent prognostic factor for overall survival (OS) in patients (Pts) across all stages of treatment-naïve lung cancer in a prospective, multicenter study [abstract no. 75P]. Ann Oncol. 2016;27(Suppl 6).

  43. Fraser-Fish J. Molecular characterization of PDL1 status of circulating tumor cells (CTCs) isolated with a novel label-free inertial microfluidic system from patients (pts) with advanced cancers [abstract no. 76P]. Ann Oncol. 2016;27(Suppl 6).

  44. Geng R. The level of soluble programmed death ligand-1 in lung cancer: an exploratory biomarker study [abstract no. 74P]. Ann Oncol. 2016;27 (Suppl 6).

  45. Rizvi NA, Hellmann MD, Snyder A, et al. Cancer immunology: mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015;348(6230):124–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kowanetz M. Tumor mutation load assessed by FoundationOne (FM1) is associated with improved efficacy of atezolizumab (atezo) in patients with advanced NSCLC [abstract no. 77P]. Ann Oncol. 2016;27(Suppl 6).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Chopra.

Ethics declarations

Funding

No funding was received for the preparation of this meeting report.

Conflict of interest

M. Chopra is a salaried employee of Adis/Springer, is responsible for the article content, and declares no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chopra, M. Checkpoint inhibitors for the treatment of non-small-cell lung cancer: news from the 2016 European Society for Medical Oncology Annual Congress. Drugs Ther Perspect 33, 126–132 (2017). https://doi.org/10.1007/s40267-016-0369-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40267-016-0369-3

Keywords

Navigation