Skip to main content
Log in

Current Status of Bruton’s Tyrosine Kinase Inhibitor Development and Use in B-Cell Malignancies

  • Review Article
  • Published:
Drugs & Aging Aims and scope Submit manuscript

Abstract

The B-cell receptor (BCR) pathway plays an important role in the survival, proliferation and trafficking of cancer cells in a variety of B-cell malignancies. Recently, a number of agents have been developed to target various components of the BCR pathway. One such target is Bruton’s tyrosine kinase (BTK), a Tec family kinase member found near the cell membrane that is involved in upstream BCR signaling. The biological function of BTK in several B-cell lymphoid malignancies has led to the development of the oral BTK inhibitor ibrutinib. In chronic lymphocytic leukemia (CLL), ibrutinib has demonstrated durable clinical responses in relapsed/refractory (R/R) patients, including those with the high-risk del(17p) cytogenetic abnormality. These findings have paved the way for trials evaluating ibrutinib in previously untreated CLL patients, and also in combination with chemoimmunotherapy or other novel agents. Durable clinical responses have also been demonstrated in mantle cell lymphoma (MCL) and Waldenström’s macroglobulinemia (WM) patients treated with ibrutinib. Ibrutinib is generally well tolerated, although current follow-up remains short and patients of advanced age are more likely to discontinue treatment for toxicity. Treatment-specific side effects such as bleeding and atrial fibrillation may, at least partly, be related to off-target inhibition of non-BTK kinases. Studies evaluating other potential indications for BTK inhibition are ongoing, including in post-allogeneic hematopoietic stem cell transplant patients for whom ibrutinib may be effective in modulating graft-versus-host disease. Combination trials of ibrutinib with venetoclax, a Bcl-2 inhibitor, are underway and are supported by sound preclinical rationale. Several next-generation BTK inhibitors are under development with the goal of decreasing treatment-related toxicity and resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Woyach JA, Johnson AJ, Byrd JC. The B-cell receptor signaling pathway as a therapeutic target in CLL. Blood. 2012;120(6):1175–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Herishanu Y, Perez-Galan P, Liu D, Biancotto A, Pittaluga S, Vire B, et al. The lymph node microenvironment promotes B-cell receptor signaling, NF-kappaB activation, and tumor proliferation in chronic lymphocytic leukemia. Blood. 2011;117(2):563–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. de Weers M, Brouns GS, Hinshelwood S, Kinnon C, Schuurman RK, Hendriks RW, et al. B-cell antigen receptor stimulation activates the human Bruton’s tyrosine kinase, which is deficient in X-linked agammaglobulinemia. J Biol Chem. 1994;269(39):23857–60.

    PubMed  Google Scholar 

  4. Rolli V, Gallwitz M, Wossning T, Flemming A, Schamel WW, Zurn C, et al. Amplification of B cell antigen receptor signaling by a Syk/ITAM positive feedback loop. Mol Cell. 2002;10(5):1057–69.

    Article  CAS  PubMed  Google Scholar 

  5. Yamamoto T, Yamanashi Y, Toyoshima K. Association of Src-family kinase Lyn with B-cell antigen receptor. Immunol Rev. 1993;132:187–206.

    Article  CAS  PubMed  Google Scholar 

  6. Shinohara H, Kurosaki T. Comprehending the complex connection between PKCbeta, TAK1, and IKK in BCR signaling. Immunol Rev. 2009;232(1):300–18.

    Article  CAS  PubMed  Google Scholar 

  7. Ozes ON, Mayo LD, Gustin JA, Pfeffer SR, Pfeffer LM, Donner DB. NF-kappaB activation by tumour necrosis factor requires the Akt serine-threonine kinase. Nature. 1999;401(6748):82–5.

    Article  CAS  PubMed  Google Scholar 

  8. Seda V, Mraz M. B-cell receptor signalling and its crosstalk with other pathways in normal and malignant cells. Eur J Haematol. 2015;94(3):193–205.

    Article  CAS  PubMed  Google Scholar 

  9. Mizuno T, Rothstein TL. B cell receptor (BCR) cross-talk: CD40 engagement creates an alternate pathway for BCR signaling that activates I kappa B kinase/I kappa B alpha/NF-kappa B without the need for PI3K and phospholipase C gamma. J Immunol. 2005;174(10):6062–70.

    Article  CAS  PubMed  Google Scholar 

  10. Buchner M, Muschen M. Targeting the B-cell receptor signaling pathway in B lymphoid malignancies. Curr Opin Hematol. 2014;21(4):341–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. de Weers M, Mensink RG, Kraakman ME, Schuurman RK, Hendriks RW. Mutation analysis of the Bruton’s tyrosine kinase gene in X-linked agammaglobulinemia: identification of a mutation which affects the same codon as is altered in immunodeficient xid mice. Hum Mol Genet. 1994;3(1):161–6.

    Article  PubMed  Google Scholar 

  12. Tsukada S, Saffran DC, Rawlings DJ, Parolini O, Allen RC, Klisak I, et al. Deficient expression of a B cell cytoplasmic tyrosine kinase in human X-linked agammaglobulinemia. Cell. 1993;72(2):279–90.

    Article  CAS  PubMed  Google Scholar 

  13. Rawlings DJ, Saffran DC, Tsukada S, Largaespada DA, Grimaldi JC, Cohen L, et al. Mutation of unique region of Bruton’s tyrosine kinase in immunodeficient XID mice. Science. 1993;261(5119):358–61.

    Article  CAS  PubMed  Google Scholar 

  14. Craxton A, Jiang A, Kurosaki T, Clark EA. Syk and Bruton’s tyrosine kinase are required for B cell antigen receptor-mediated activation of the kinase Akt. J Biol Chem. 1999;274(43):30644–50.

    Article  CAS  PubMed  Google Scholar 

  15. Petro JB, Khan WN. Phospholipase C-gamma 2 couples Bruton’s tyrosine kinase to the NF-kappaB signaling pathway in B lymphocytes. J Biol Chem. 2001;276(3):1715–9.

    Article  CAS  PubMed  Google Scholar 

  16. Petro JB, Rahman SM, Ballard DW, Khan WN. Bruton’s tyrosine kinase is required for activation of IkappaB kinase and nuclear factor kappaB in response to B cell receptor engagement. J Exp Med. 2000;191(10):1745–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Herman SE, Gordon AL, Hertlein E, Ramanunni A, Zhang X, Jaglowski S, et al. Bruton tyrosine kinase represents a promising therapeutic target for treatment of chronic lymphocytic leukemia and is effectively targeted by PCI-32765. Blood. 2011;117(23):6287–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yang G, Zhou Y, Liu X, Xu L, Cao Y, Manning RJ, et al. A mutation in MYD88 (L265P) supports the survival of lymphoplasmacytic cells by activation of Bruton tyrosine kinase in Waldenstrom macroglobulinemia. Blood. 2013;122(7):1222–32.

    Article  CAS  PubMed  Google Scholar 

  19. Honigberg LA, Smith AM, Sirisawad M, Verner E, Loury D, Chang B, et al. The Bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell activation and is efficacious in models of autoimmune disease and B-cell malignancy. Proc Natl Acad Sci USA. 2010;107(29):13075–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pan Z, Scheerens H, Li SJ, Schultz BE, Sprengeler PA, Burrill LC, et al. Discovery of selective irreversible inhibitors for Bruton’s tyrosine kinase. Chem Med Chem. 2007;2(1):58–61.

    Article  CAS  PubMed  Google Scholar 

  21. Advani RH, Buggy JJ, Sharman JP, Smith SM, Boyd TE, Grant B, et al. Bruton tyrosine kinase inhibitor ibrutinib (PCI-32765) has significant activity in patients with relapsed/refractory B-cell malignancies. J Clin Oncol. 2013;31(1):88–94.

    Article  CAS  PubMed  Google Scholar 

  22. Dubovsky JA, Beckwith KA, Natarajan G, Woyach JA, Jaglowski S, Zhong Y, et al. Ibrutinib is an irreversible molecular inhibitor of ITK driving a Th1-selective pressure in T lymphocytes. Blood. 2013;122(15):2539–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang A, Yan XE, Wu H, Wang W, Hu C, Chen C, et al. Ibrutinib targets mutant-EGFR kinase with a distinct binding conformation. Oncotarget. 2016;7(43):69760–9.

    PubMed  PubMed Central  Google Scholar 

  24. Levade M, David E, Garcia C, Laurent PA, Cadot S, Michallet AS, et al. Ibrutinib treatment affects collagen and von Willebrand factor-dependent platelet functions. Blood. 2014;124(26):3991–5.

    Article  CAS  PubMed  Google Scholar 

  25. Woyach JA, Furman RR, Liu TM, Ozer HG, Zapatka M, Ruppert AS, et al. Resistance mechanisms for the Bruton’s tyrosine kinase inhibitor ibrutinib. N Engl J Med. 2014;370(24):2286–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Byrd JC, Furman RR, Coutre SE, Flinn IW, Burger JA, Blum KA, et al. Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. N Engl J Med. 2013;369(1):32–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hallek M, Cheson BD, Catovsky D, Caligaris-Cappio F, Dighiero G, Dohner H, et al. Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute-Working Group 1996 guidelines. Blood. 2008;111(12):5446–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Byrd JC, Furman RR, Coutre SE, Burger JA, Blum KA, Coleman M, et al. Three-year follow-up of treatment-naive and previously treated patients with CLL and SLL receiving single-agent ibrutinib. Blood. 2015;125(16):2497–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. O’Brien SM, Furman RR, Coutre SE, Flinn IW, Burger J, Blum K, et al. Five-year experience with single-agent ibrutinib in patients with previously untreated and relapsed/refractory chronic lymphocytic leukemia/small lymphocytic leukemia. Blood. 2016;128:233.

    Google Scholar 

  30. Brown JR, Hillmen P, O’Brien S, Barrientos JC, Reddy N, Coutre S, et al. Updated efficacy including genetic and clinical subgroup analysis and overall safety in the phase 3 RESONATE™ trial of ibrutinib versus ofatumumab in previously treated chronic lymphocytic leukemia/small lymphocytic lymphoma. Blood. 2014;124(21):3331.

    Google Scholar 

  31. Byrd JC, Brown JR, O’Brien S, Barrientos JC, Kay NE, Reddy NM, et al. Ibrutinib versus ofatumumab in previously treated chronic lymphoid leukemia. N Engl J Med. 2014;371(3):213–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Burger JA, Keating MJ, Wierda WG, Hartmann E, Hoellenriegel J, Rosin NY, et al. Safety and activity of ibrutinib plus rituximab for patients with high-risk chronic lymphocytic leukaemia: a single-arm, phase 2 study. Lancet Oncol. 2014;15(10):1090–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kohrt HE, Sagiv-Barfi I, Rafiq S, Herman SE, Butchar JP, Cheney C, et al. Ibrutinib antagonizes rituximab-dependent NK cell-mediated cytotoxicity. Blood. 2014;123(12):1957–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Skarzynski M, Niemann CU, Lee YS, Martyr S, Maric I, Salem D, et al. Interactions between ibrutinib and anti-CD20 antibodies: competing effects on the outcome of combination therapy. Clin Cancer Res. 2016;22(1):86–95.

    Article  CAS  PubMed  Google Scholar 

  35. Bojarczuk K, Siernicka M, Dwojak M, Bobrowicz M, Pyrzynska B, Gaj P, et al. B-cell receptor pathway inhibitors affect CD20 levels and impair antitumor activity of anti-CD20 monoclonal antibodies. Leukemia. 2014;28(5):1163–7.

    Article  CAS  PubMed  Google Scholar 

  36. Pavlasova G, Borsky M, Seda V, Cerna K, Osickova J, Doubek M, et al. Ibrutinib inhibits CD20 upregulation on CLL B cells mediated by the CXCR4/SDF-1 axis. Blood. 2016;128(12):1609–13.

    Article  CAS  PubMed  Google Scholar 

  37. Goede V, Fischer K, Busch R, Engelke A, Eichhorst B, Wendtner CM, et al. Obinutuzumab plus chlorambucil in patients with CLL and coexisting conditions. N Engl J Med. 2014;370(12):1101–10.

    Article  CAS  PubMed  Google Scholar 

  38. Goede V, Fischer K, Engelke A, Schlag R, Lepretre S, Montero LF, et al. Obinutuzumab as frontline treatment of chronic lymphocytic leukemia: updated results of the CLL11 study. Leukemia. 2015;29(7):1602–4.

    Article  CAS  PubMed  Google Scholar 

  39. Chanan-Khan A, Cramer P, Demirkan F, Fraser G, Silva RS, Grosicki S, et al. Ibrutinib combined with bendamustine and rituximab compared with placebo, bendamustine, and rituximab for previously treated chronic lymphocytic leukaemia or small lymphocytic lymphoma (HELIOS): a randomised, double-blind, phase 3 study. Lancet Oncol. 2016;17(2):200–11.

    Article  CAS  PubMed  Google Scholar 

  40. Brown JR, Barrientos JC, Barr PM, Flinn IW, Burger JA, Tran A, et al. The Bruton tyrosine kinase inhibitor ibrutinib with chemoimmunotherapy in patients with chronic lymphocytic leukemia. Blood. 2015;125(19):2915–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dohner H, Stilgenbauer S, Benner A, Leupolt E, Krober A, Bullinger L, et al. Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med. 2000;343(26):1910–6.

    Article  CAS  PubMed  Google Scholar 

  42. Hallek M, Fischer K, Fingerle-Rowson G, Fink AM, Busch R, Mayer J, et al. Addition of rituximab to fludarabine and cyclophosphamide in patients with chronic lymphocytic leukaemia: a randomised, open-label, phase 3 trial. Lancet. 2010;376(9747):1164–74.

    Article  CAS  PubMed  Google Scholar 

  43. Fischer K, Bahlo J, Fink AM, Goede V, Herling CD, Cramer P, et al. Long-term remissions after FCR chemoimmunotherapy in previously untreated patients with CLL: updated results of the CLL8 trial. Blood. 2016;127(2):208–15.

    Article  CAS  PubMed  Google Scholar 

  44. Hillmen P, Skotnicki AB, Robak T, Jaksic B, Dmoszynska A, Wu J, et al. Alemtuzumab compared with chlorambucil as first-line therapy for chronic lymphocytic leukemia. J Clin Oncol. 2007;25(35):5616–23.

    Article  CAS  PubMed  Google Scholar 

  45. Pettitt AR, Jackson R, Carruthers S, Dodd J, Dodd S, Oates M, et al. Alemtuzumab in combination with methylprednisolone is a highly effective induction regimen for patients with chronic lymphocytic leukemia and deletion of TP53: final results of the national cancer research institute CLL206 trial. J Clin Oncol. 2012;30(14):1647–55.

    Article  CAS  PubMed  Google Scholar 

  46. Farooqui MZ, Valdez J, Martyr S, Aue G, Saba N, Niemann CU, et al. Ibrutinib for previously untreated and relapsed or refractory chronic lymphocytic leukaemia with TP53 aberrations: a phase 2, single-arm trial. Lancet Oncol. 2015;16(2):169–76.

    Article  CAS  PubMed  Google Scholar 

  47. Farooqui M, Valdez J, Soto S, Stetler-Stevenson M, Yuan CM, Thomas F, et al. Single agent ibrutinib in CLL/SLL patients with and without deletion 17p. Blood. 2015;126:2937.

    Google Scholar 

  48. O’Brien S, Jones JA, Coutre SE, Mato AR, Hillmen P, Tam C, et al. Ibrutinib for patients with relapsed or refractory chronic lymphocytic leukaemia with 17p deletion (RESONATE-17): a phase 2, open-label, multicentre study. Lancet Oncol. 2016;17(10):1409–18.

    Article  PubMed  CAS  Google Scholar 

  49. Eichhorst B, Fink AM, Bahlo J, Busch R, Kovacs G, Maurer C, et al. First-line chemoimmunotherapy with bendamustine and rituximab versus fludarabine, cyclophosphamide, and rituximab in patients with advanced chronic lymphocytic leukaemia (CLL10): an international, open-label, randomised, phase 3, non-inferiority trial. Lancet Oncol. 2016;17(7):928–42.

    Article  CAS  PubMed  Google Scholar 

  50. Burger JA, Tedeschi A, Barr PM, Robak T, Owen C, Ghia P, et al. Ibrutinib as initial therapy for patients with chronic lymphocytic leukemia. N Engl J Med. 2015;373(25):2425–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Barr P, Robak T, Owen CJ, Tedeschi A, Bairey O, Bartlett NL, et al. Updated efficacy and safety from the phase 3 Resonate-2 study: ibrutinib as first-line treatment option in patients 65 years and older with chronic lymphocytic leukemia/small lymphocytic leukemia. Blood. 2016;128:234.

    Article  Google Scholar 

  52. Hillmen P, Robak T, Janssens A, Babu KG, Kloczko J, Grosicki S, et al. Chlorambucil plus ofatumumab versus chlorambucil alone in previously untreated patients with chronic lymphocytic leukaemia (COMPLEMENT 1): a randomised, multicentre, open-label phase 3 trial. Lancet. 2015;385(9980):1873–83.

    Article  CAS  PubMed  Google Scholar 

  53. Davids MS, Kim HT, Bsat J, Savell A, Francoeur K, Hellman JM, et al. Preliminary results of a phase II study of ibrutinib in combination with FCR (iFCR) in previously untreated, younger patients with CLL. Copenhagen: European Hematology Association (EHA); 2016.

    Google Scholar 

  54. Meggendorfer M, Kern W, Haferlach C, Haferlach T, Schnittger S. SOX11 overexpression is a specific marker for mantle cell lymphoma and correlates with t(11;14) translocation, CCND1 expression and an adverse prognosis. Leukemia. 2013;27(12):2388–91.

    Article  CAS  PubMed  Google Scholar 

  55. Nordstrom L, Sernbo S, Eden P, Gronbaek K, Kolstad A, Raty R, et al. SOX11 and TP53 add prognostic information to MIPI in a homogenously treated cohort of mantle cell lymphoma—a Nordic Lymphoma Group study. Br J Haematol. 2014;166(1):98–108.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Navarro A, Clot G, Royo C, Jares P, Hadzidimitriou A, Agathangelidis A, et al. Molecular subsets of mantle cell lymphoma defined by the IGHV mutational status and SOX11 expression have distinct biologic and clinical features. Cancer Res. 2012;72(20):5307–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wang ML, Rule S, Martin P, Goy A, Auer R, Kahl BS, et al. Targeting BTK with ibrutinib in relapsed or refractory mantle-cell lymphoma. N Engl J Med. 2013;369(6):507–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hoster E, Dreyling M, Klapper W, Gisselbrecht C, van Hoof A, Kluin-Nelemans HC, et al. A new prognostic index (MIPI) for patients with advanced-stage mantle cell lymphoma. Blood. 2008;111(2):558–65.

    Article  CAS  PubMed  Google Scholar 

  59. Wang ML, Blum KA, Martin P, Goy A, Auer R, Kahl BS, et al. Long-term follow-up of MCL patients treated with single-agent ibrutinib: updated safety and efficacy results. Blood. 2015;126(6):739–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Witzig TE, Geyer SM, Ghobrial I, Inwards DJ, Fonseca R, Kurtin P, et al. Phase II trial of single-agent temsirolimus (CCI-779) for relapsed mantle cell lymphoma. J Clin Oncol. 2005;23(23):5347–56.

    Article  CAS  PubMed  Google Scholar 

  61. Ansell SM, Inwards DJ, Rowland KM Jr, Flynn PJ, Morton RF, Moore DF Jr, et al. Low-dose, single-agent temsirolimus for relapsed mantle cell lymphoma: a phase 2 trial in the North Central Cancer Treatment Group. Cancer. 2008;113(3):508–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hess G, Herbrecht R, Romaguera J, Verhoef G, Crump M, Gisselbrecht C, et al. Phase III study to evaluate temsirolimus compared with investigator’s choice therapy for the treatment of relapsed or refractory mantle cell lymphoma. J Clin Oncol. 2009;27(23):3822–9.

    Article  CAS  PubMed  Google Scholar 

  63. Dreyling M, Jurczak W, Jerkeman M, Silva RS, Rusconi C, Trneny M, et al. Ibrutinib versus temsirolimus in patients with relapsed or refractory mantle-cell lymphoma: an international, randomised, open-label, phase 3 study. Lancet. 2016;387(10020):770–8.

    Article  CAS  PubMed  Google Scholar 

  64. Wang ML, Lee H, Chuang H, Wagner-Bartak N, Hagemeister F, Westin J, et al. Ibrutinib in combination with rituximab in relapsed or refractory mantle cell lymphoma: a single-centre, open-label, phase 2 trial. Lancet Oncol. 2016;17(1):48–56.

    Article  CAS  PubMed  Google Scholar 

  65. Wang M, Lee HJ, Thirumurthi S, Chuang HH, Hagemeister FB, Westin JR, et al. Chemotherapy-free induction with ibrutinib-rituximab followed by shortened cycles of chemo-immunotherapy consolidation in young, newly diagnosed mantle cell lymphoma patients: a phase II clinical trial. Blood. 2016;128:147.

    Article  Google Scholar 

  66. Maddocks K, Christian B, Jaglowski S, Flynn J, Jones JA, Porcu P, et al. A phase 1/1b study of rituximab, bendamustine, and ibrutinib in patients with untreated and relapsed/refractory non-Hodgkin lymphoma. Blood. 2015;125(2):242–8.

    Article  CAS  PubMed  Google Scholar 

  67. Jerkeman M, Hutchings M, Räty R, Wader KF, Laurell A, Kuitunen H, et al. Ibrutinib-lenalidomide-rituximab in patients with relapsed/refractory mantle cell lymphoma: first results from the Nordic Lymphoma Group MCL6 (PHILEMON) phase II trial. Blood. 2016;128:148.

    Google Scholar 

  68. Treon SP, Xu L, Yang G, Zhou Y, Liu X, Cao Y, et al. MYD88 L265P somatic mutation in Waldenstrom’s macroglobulinemia. N Engl J Med. 2012;367(9):826–33.

    Article  CAS  PubMed  Google Scholar 

  69. Hunter ZR, Xu L, Yang G, Zhou Y, Liu X, Cao Y, et al. The genomic landscape of Waldenstrom macroglobulinemia is characterized by highly recurring MYD88 and WHIM-like CXCR4 mutations, and small somatic deletions associated with B-cell lymphomagenesis. Blood. 2014;123(11):1637–46.

    Article  CAS  PubMed  Google Scholar 

  70. Treon SP, Tripsas CK, Meid K, Warren D, Varma G, Green R, et al. Ibrutinib in previously treated Waldenstrom’s macroglobulinemia. N Engl J Med. 2015;372(15):1430–40.

    Article  CAS  PubMed  Google Scholar 

  71. Dimopoulos MA, Trotman J, Tedeschi A, Matous JV, Macdonald D, Tam C, et al. Therapy in rituximab-refractory patients with Waldenström’s macroglobulinemia: initial results from an international, multicenter, open-label phase 3 substudy (iNNOVATE™). Blood. 2015;126:2745.

    Google Scholar 

  72. Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature. 2000;403(6769):503–11.

    Article  CAS  PubMed  Google Scholar 

  73. Rosenwald A, Wright G, Chan WC, Connors JM, Campo E, Fisher RI, et al. The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N Engl J Med. 2002;346(25):1937–47.

    Article  PubMed  Google Scholar 

  74. Lenz G, Wright G, Dave SS, Xiao W, Powell J, Zhao H, et al. Stromal gene signatures in large-B-cell lymphomas. N Engl J Med. 2008;359(22):2313–23.

    Article  CAS  PubMed  Google Scholar 

  75. Young RM, Shaffer AL 3rd, Phelan JD, Staudt LM. B-cell receptor signaling in diffuse large B-cell lymphoma. Semin Hematol. 2015;52(2):77–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wilson WH, Young RM, Schmitz R, Yang Y, Pittaluga S, Wright G, et al. Targeting B cell receptor signaling with ibrutinib in diffuse large B cell lymphoma. Nat Med. 2015;21(8):922–6.

    Article  CAS  PubMed  Google Scholar 

  77. Bernard S, Goldwirt L, Amorim S, Brice P, Briere J, de Kerviler E, et al. Activity of ibrutinib in mantle cell lymphoma patients with central nervous system relapse. Blood. 2015;126(14):1695–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Cabannes-Hamy A, Lemal R, Goldwirt L, Poulain S, Amorim S, Perignon R, et al. Efficacy of ibrutinib in the treatment of Bing–Neel syndrome. Am J Hematol. 2016;91(3):E17–9.

    Article  PubMed  Google Scholar 

  79. Dunleavy K, Lai CE, Roschewski M, Brudno JN, Widemann B, Pittaluga S, et al. Phase I study of dose-adjusted-Teddi-R with ibrutinib in untreated and relapsed/refractory primary CNS lymphoma. Blood. 2015;126:472.

    Google Scholar 

  80. Tam CS, Kimber T, Seymour JF. Ibrutinib monotherapy as effective treatment of central nervous system involvement by chronic lymphocytic leukaemia. Br J Haematol. 2016;176(5):829–31.

    Article  PubMed  CAS  Google Scholar 

  81. Wanquet A, Birsen R, Lemal R, Hunault M, Leblond V, Aurran-Schleinitz T. Ibrutinib responsive central nervous system involvement in chronic lymphocytic leukemia. Blood. 2016;127(19):2356–8.

    Article  CAS  PubMed  Google Scholar 

  82. Herman SE, Niemann CU, Farooqui M, Jones J, Mustafa RZ, Lipsky A, et al. Ibrutinib-induced lymphocytosis in patients with chronic lymphocytic leukemia: correlative analyses from a phase II study. Leukemia. 2014;28(11):2188–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Woyach JA, Smucker K, Smith LL, Lozanski A, Zhong Y, Ruppert AS, et al. Prolonged lymphocytosis during ibrutinib therapy is associated with distinct molecular characteristics and does not indicate a suboptimal response to therapy. Blood. 2014;123(12):1810–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Cheson BD, Byrd JC, Rai KR, Kay NE, O’Brien SM, Flinn IW, et al. Novel targeted agents and the need to refine clinical end points in chronic lymphocytic leukemia. J Clin Oncol. 2012;30(23):2820–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Brown JR, O’Brien S, Moslehi J, Fraser G, Cymbalista F, Shanafelt TD, et al. Pooled analysis of atrial fibrillation adverse events in ibrutinib randomized controlled registration trials. 2016 ASH Meeting on Hematologic Malignancies, 16–17 Sep 2016, Chicago, IL.

  86. Kamel S, Horton L, Ysebaert L, Levade M, Burbury K, Tan S, et al. Ibrutinib inhibits collagen-mediated but not ADP-mediated platelet aggregation. Leukemia. 2015;29(4):783–7.

    Article  CAS  PubMed  Google Scholar 

  87. Lipsky AH, Farooqui MZ, Tian X, Martyr S, Cullinane AM, Nghiem K, et al. Incidence and risk factors of bleeding-related adverse events in patients with chronic lymphocytic leukemia treated with ibrutinib. Haematologica. 2015;100(12):1571–8.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Leong DP, Caron F, Hillis C, Duan A, Healey JS, Fraser G, et al. The risk of atrial fibrillation with ibrutinib use: a systematic review and meta-analysis. Blood. 2016;128(1):138–40.

    Article  CAS  PubMed  Google Scholar 

  89. Shanafelt TD, Chaffee KG, Call TG, Parikh SA, Schwager SM, Ding W, et al. Atrial fibrillation in patients with chronic lymphocytic leukemia (CLL). Blood. 2015;126:2950.

    Google Scholar 

  90. McMullen JR, Boey EJ, Ooi JY, Seymour JF, Keating MJ, Tam CS. Ibrutinib increases the risk of atrial fibrillation, potentially through inhibition of cardiac PI3K-Akt signaling. Blood. 2014;124(25):3829–30.

    Article  CAS  PubMed  Google Scholar 

  91. Pretorius L, Du XJ, Woodcock EA, Kiriazis H, Lin RC, Marasco S, et al. Reduced phosphoinositide 3-kinase (p110alpha) activation increases the susceptibility to atrial fibrillation. Am J Pathol. 2009;175(3):998–1009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Mato AR, Nabhan C, Barr PM, Ujjani CS, Hill BT, Lamanna N, et al. Outcomes of CLL patients treated with sequential kinase inhibitor therapy: a real world experience. Blood. 2016;128(18):2199–205.

    Article  PubMed  Google Scholar 

  93. Sagiv-Barfi I, Kohrt HE, Czerwinski DK, Ng PP, Chang BY, Levy R. Therapeutic antitumor immunity by checkpoint blockade is enhanced by ibrutinib, an inhibitor of both BTK and ITK. Proc Natl Acad Sci USA. 2015;112(9):E966–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Gomez-Rodriguez J, Wohlfert EA, Handon R, Meylan F, Wu JZ, Anderson SM, et al. Itk-mediated integration of T cell receptor and cytokine signaling regulates the balance between Th17 and regulatory T cells. J Exp Med. 2014;211(3):529–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Niemann CU, Herman SE, Maric I, Gomez-Rodriguez J, Biancotto A, Chang BY, et al. Disruption of in vivo chronic lymphocytic leukemia tumor-microenvironment interactions by ibrutinib: findings from an investigator-initiated phase II study. Clin Cancer Res. 2016;22(7):1572–82.

    Article  CAS  PubMed  Google Scholar 

  96. Sun C, Tian X, Lee YS, Gunti S, Lipsky A, Herman SE, et al. Partial reconstitution of humoral immunity and fewer infections in patients with chronic lymphocytic leukemia treated with ibrutinib. Blood. 2015;126(19):2213–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ruchlemer R, Ben Ami R, Lachish T. Ibrutinib for chronic lymphocytic leukemia. N Engl J Med. 2016;374(16):1593–4.

    PubMed  Google Scholar 

  98. Ahn IE, Jerussi T, Farooqui M, Tian X, Wiestner A, Gea-Banacloche J. Atypical pneumocystis jirovecii pneumonia in previously untreated patients with CLL on single-agent ibrutinib. Blood. 2016;128(15):1940–3.

    Article  CAS  PubMed  Google Scholar 

  99. Maddocks KJ, Ruppert AS, Lozanski G, Heerema NA, Zhao W, Abruzzo L, et al. Etiology of ibrutinib therapy discontinuation and outcomes in patients with chronic lymphocytic leukemia. JAMA Oncol. 2015;1(1):80–7.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Winqvist M, Asklid A, Andersson PO, Karlsson K, Karlsson C, Lauri B, et al. Real-world results of ibrutinib in patients with relapsed or refractory chronic lymphocytic leukemia: data from 95 consecutive patients treated in a compassionate use program. A study from the Swedish Chronic Lymphocytic Leukemia Group. Haematologica. 2016;101(12):1573–80.

    Article  PubMed  Google Scholar 

  101. Jain P, Keating M, Wierda W, Estrov Z, Ferrajoli A, Jain N, et al. Outcomes of patients with chronic lymphocytic leukemia after discontinuing ibrutinib. Blood. 2015;125:2062–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Martin P, Maddocks K, Leonard JP, Ruan J, Goy A, Wagner-Johnston N, et al. Postibrutinib outcomes in patients with mantle cell lymphoma. Blood. 2016;127(12):1559–63.

    Article  CAS  PubMed  Google Scholar 

  103. Burger JA, Landau DA, Taylor-Weiner A, Bozic I, Zhang H, Sarosiek K, et al. Clonal evolution in patients with chronic lymphocytic leukaemia developing resistance to BTK inhibition. Nat Commun. 2016;7:11589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Mathews Griner LA, Guha R, Shinn P, Young RM, Keller JM, Liu D, et al. High-throughput combinatorial screening identifies drugs that cooperate with ibrutinib to kill activated B-cell-like diffuse large B-cell lymphoma cells. Proc Natl Acad Sci USA. 2014;111(6):2349–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Li Y, Bouchlaka MN, Grindle K, Kahl BS, Miyamoto S, Yang DT, et al. Synergistic co-targeting of BTK and BCL2 in mantle cell lymphoma. Blood. 2015;126:708.

    Google Scholar 

  106. Li Y, Bouchlaka MN, Wolff J, Grindle KM, Lu L, Qian S, et al. FBXO10 deficiency and BTK activation upregulate BCL2 expression in mantle cell lymphoma. Oncogene. 2016;35(48):6223–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Zhao X, Bodo J, Sun D, Durkin L, Lin J, Smith MR, et al. Combination of ibrutinib with ABT-199: synergistic effects on proliferation inhibition and apoptosis in mantle cell lymphoma cells through perturbation of BTK, AKT and BCL2 pathways. Br J Haematol. 2015;168(5):765–8.

    Article  CAS  PubMed  Google Scholar 

  108. Cao Y, Yang G, Hunter ZR, Liu X, Xu L, Chen J, et al. The BCL2 antagonist ABT-199 triggers apoptosis, and augments ibrutinib and idelalisib mediated cytotoxicity in CXCR4 Wild-type and CXCR4 WHIM mutated Waldenstrom macroglobulinaemia cells. Br J Haematol. 2015;170(1):134–8.

    Article  CAS  PubMed  Google Scholar 

  109. Jones R, Axelrod MJ, Tumas D, Quéva C, Di Paolo J. Combination effects of B cell receptor pathway inhibitors (entospletinib, ONO/GS-4059, and idelalisib) and a BCL-2 inhibitor in primary CLL cells. Blood. 2015;126:1749.

    Article  CAS  Google Scholar 

  110. Axelrod M, Ou Z, Zhang L, Gordon V, Lopez ER, Tamayo AT, et al. drug screening reveals that ibrutinib (PCI-32765) exhibits synergy with BCL-2 and proteasome inhibitors in models of mantle cell lymphoma (MCL) and chronic lymphocytic leukemia (CLL). Blood. 2013;122:3080.

    Google Scholar 

  111. Jayappa KD, Portell CA, Gordon V, Williams ME, Petricoin EF, Bender TP, et al. Ligands that mimic the tissue microenvironment of replicating chronic lymphocytic leukemia (CLL) and mantle cell lymphoma (MCL) protect ex vivo patient cell samples from the cytotoxicity of combined treatment with ibrutinib and venetoclax (ABT-199). Blood. 2015;126:448.

    Google Scholar 

  112. Cervantes-Gomez F, Lamothe B, Woyach JA, Wierda WG, Keating MJ, Balakrishnan K, et al. Pharmacological and protein profiling suggests venetoclax (ABT-199) as optimal partner with ibrutinib in chronic lymphocytic leukemia. Clin Cancer Res. 2015;21(16):3705–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Deng J, Isik E, Fernandes SM, Brown JR, Letai A, Davids MS. Bruton’s tyrosine kinase inhibition increases BCL-2 dependence and enhances sensitivity to venetoclax in chronic lymphocytic leukemia. Leukemia. Epub 14 Feb 2017.

  114. Jones JA, Woyach J, Awan FT, Maddocks KJ, Whitlow T, Ruppert AS, et al. Phase 1b results of a phase 1b/2 study of obinutuzmab, ibrutinib, and venetoclax in relapsed/refractory chronic lymphocytic leukemia (CLL). Blood. 2016;128:639.

    Google Scholar 

  115. Brown JR, Harb WA, Hill BT, Gabrilove J, Sharman JP, Schreeder MT, et al. Phase I study of single-agent CC-292, a highly selective Bruton’s tyrosine kinase inhibitor, in relapsed/refractory chronic lymphocytic leukemia. Haematologica. 2016;101(7):e295–8.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Herman SE, Montraveta A, Niemann CU, Mora-Jensen H, Gulrajani M, Krantz F, et al. The Bruton tyrosine kinase (BTK) inhibitor acalabrutinib demonstrates potent on-target effects and efficacy in two mouse models of chronic lymphocytic leukemia. Clin Cancer Res. Epub 30 Nov 2016.

  117. Byrd JC, Harrington B, O’Brien S, Jones JA, Schuh A, Devereux S, et al. Acalabrutinib (ACP-196) in relapsed chronic lymphocytic leukemia. N Engl J Med. 2016;374(4):323–32.

    Article  CAS  PubMed  Google Scholar 

  118. Li N, Sun Z, Liu Y, Guo M, Zhang Y, Zhou D, et al. Abstract 2597: BGB-3111 is a novel and highly selective Bruton’s tyrosine kinase (BTK) inhibitor. Cancer Res. 2015;75:2597.

    Article  Google Scholar 

  119. Tam C, Grigg AP, Opat S, Ku M, Gilbertson M, Anderson MA, et al. The BTK inhibitor, Bgb-3111, is safe, tolerable, and highly active in patients with relapsed/ refractory B-cell malignancies: initial report of a phase 1 first-in-human trial. Blood. 2015;126:832.

    Google Scholar 

  120. Walter HS, Rule SA, Dyer MJ, Karlin L, Jones C, Cazin B, et al. A phase 1 clinical trial of the selective BTK inhibitor ONO/GS-4059 in relapsed and refractory mature B-cell malignancies. Blood. 2016;127(4):411–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Salles GA, Karlin L, Rule S, Shah N, Morschhauser F, Terriou L, et al. A phase I study of the oral Btk inhibitor ONO-4059 in patients with relapsed/refractory and high risk chronic lymphocytic leukaemia (CLL). Blood. 2013;122:676.

    Google Scholar 

  122. Binnerts ME, Otipoby KL, Hopkins BT, Bohnert T, Hansen S, Jamieson G, et al. Abstract C186: SNS-062 is a potent noncovalent BTK inhibitor with comparable activity against wild type BTK and BTK with an acquired resistance mutation. Mol Cancer Ther. 2016;14:C186.

    Article  Google Scholar 

  123. Neuman LL, Ward R, Arnold D, Combs DL, Gruver D, Hill W, et al. First-in-human phase 1a study of the safety, pharmacokinetics, and pharmacodynamics of the noncovalent bruton tyrosine kinase (BTK) inhibitor SNS-062 in healthy subjects. Blood. 2016;128:2032.

    Google Scholar 

  124. Tam C, Anderson MA, Ritchie DS, Januszewicz EH, Carney D, Roberts AW, et al. favorable patient survival after failure of venetoclax (ABT-199/GDC-0199) therapy for relapsed or refractory chronic lymphocytic leukemia (CLL). Blood. 2015;126:2939.

    Google Scholar 

  125. Ryan CE, Sahaf B, Logan AC, O’Brien S, Byrd JC, Hillmen P, et al. Ibrutinib efficacy and tolerability in patients with relapsed chronic lymphocytic leukemia following allogeneic HCT. Blood. 2016;128(25):2899–908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Link CS, Teipel R, Heidenreich F, Rucker-Braun E, Schmiedgen M, Reinhardt J, et al. Durable responses to ibrutinib in patients with relapsed CLL after allogeneic stem cell transplantation. Bone Marrow Transplant. 2016;51(6):793–8.

    Article  CAS  PubMed  Google Scholar 

  127. Miklos D, Cutler CS, Arora M, Waller EK, Jagasia M, Pusic I, et al. Multicenter open-label phase 2 study of ibrutinib in chronic graft versus host disease (cGVHD) after failure of corticosteroids. Blood. 2016;128:LBA-3.

    Google Scholar 

  128. Chang BY, Huang MM, Francesco M, Chen J, Sokolove J, Magadala P, et al. The Bruton tyrosine kinase inhibitor PCI-32765 ameliorates autoimmune arthritis by inhibition of multiple effector cells. Arthritis Res Ther. 2011;13(4):R115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Shinohara M, Chang BY, Buggy JJ, Nagai Y, Kodama T, Asahara H, et al. The orally available Btk inhibitor ibrutinib (PCI-32765) protects against osteoclast-mediated bone loss. Bone. 2014;60:8–15.

    Article  CAS  PubMed  Google Scholar 

  130. Benson M, Mobini R, Barrenas F, Hallden C, Naluai AT, Sall T, et al. A haplotype in the inducible T-cell tyrosine kinase is a risk factor for seasonal allergic rhinitis. Allergy. 2009;64(9):1286–91.

    Article  CAS  PubMed  Google Scholar 

  131. Sahu N, Venegas AM, Jankovic D, Mitzner W, Gomez-Rodriguez J, Cannons JL, et al. Selective expression rather than specific function of Txk and Itk regulate Th1 and Th2 responses. J Immunol. 2008;181(9):6125–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer R. Brown.

Ethics declarations

Funding

None.

Conflict of interest

Andrew Aw has received honoraria from Gilead. Jennifer R. Brown has served as a consultant for Janssen, Pharmacyclics, Celgene, Sun, Astra-Zeneca, Gilead, Infinity, Abbvie and Roche/Genentech, has served on an independent review board for Celgene, and has received honoraria from Janssen and Abbvie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aw, A., Brown, J.R. Current Status of Bruton’s Tyrosine Kinase Inhibitor Development and Use in B-Cell Malignancies. Drugs Aging 34, 509–527 (2017). https://doi.org/10.1007/s40266-017-0468-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40266-017-0468-4

Navigation