Skip to main content

BTK Inhibitors: Focus on Ibrutinib and Similar Agents

  • Chapter
  • First Online:
Resistance of Targeted Therapies Excluding Antibodies for Lymphomas

Part of the book series: Resistance to Targeted Anti-Cancer Therapeutics ((RTACT,volume 17))

  • 391 Accesses

Abstract

Since Bruton tyrosine kinase (BTK) is a critical effector molecule for B cell development and lymphomagenesis, BTK inhibitors have been investigated in B cell malignancies during the last decade. Ibrutinib, a first-in-class, potent, orally administered covalently-binding inhibitor of BTK was recently approved for the treatment of chronic lymphocytic leukemia (CLL), mantle cell lymphoma (MCL), Waldenström’s macroglobulinemia (WM) and marginal-zone lymphoma (MZL). Its use led to impressive responses in CLL, MCL, WM and MZL with a favorable safety profile. Mechanisms of resistance to ibrutinib are different according to disease biology and still need to be fully elucidated. In CLL and WM patients progressing on ibrutinib, BTK and downstream kinase Phospholipase Cγ2 (PLCγ2) mutations have been identified leading to resistance. BTK and PLCγ2 mutations are almost always absent at the beginning of treatment and they are detected at a later timepoint, suggesting the evolution of clonal dynamics under treatment pressure. Primary and secondary resistances in MCL are driven by mutations promoting the activation of the alternative NFκB-pathway and PI3K-AKT pathway. Further work needs to be done to elucidate the mechanisms behind primary refractory patients, to define the risk for clonal evolution/new mutations over time on treatment, and to identify prognostic/predictive markers for patients on BTK inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gauld SB, Dal Porto JM, Cambier JCB. Cell antigen receptor signaling: roles in cell development and disease. Science. 2002;296:1641–2.

    Article  CAS  PubMed  Google Scholar 

  2. Dal Porto JM, Gauld SB, Merrell KT, Mills D, Pugh-Bernard AE, Cambier JB. Cell antigen receptor signaling 101. Mol Immunol. 2004;41:599–613.

    Article  CAS  PubMed  Google Scholar 

  3. Bruton OC. Agammaglobulinemia. Pediatrics. 1952;9:722–8.

    CAS  PubMed  Google Scholar 

  4. Naor D, Bentwich Z, Cividalli G. Inability of peripheral lymphoid cells of agammaglobulinaemic patients to bind radioiodinated albumins. Aust J Exp Biol Med Sci. 1969;47:759–61.

    Article  CAS  PubMed  Google Scholar 

  5. Cooper MD, Lawton AR, Bockman DE. Agammaglobulinaemia with B lymphocytes. Specific defect of plasma-cell differentiation. Lancet. 1971;2:791–4.

    Article  CAS  PubMed  Google Scholar 

  6. Niemann CU, Wiestner A. B-cell receptor signaling as a driver of lymphoma development and evolution. Semin Cancer Biol. 2013;23:410–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Singh J, Petter RC, Kluge AF. Targeted covalent drugs of the kinase family. Curr Opin Chem Biol. 2010;14:475–80.

    Article  CAS  PubMed  Google Scholar 

  8. Wiestner A. BCR pathway inhibition as therapy for chronic lymphocytic leukemia and lymphoplasmacytic lymphoma. Hematology Am Soc Hematol Educ Program. 2014;2014:125–34.

    PubMed  Google Scholar 

  9. Spaargaren M, Beuling EA, Rurup ML, et al. The B cell antigen receptor controls integrin activity through Btk and PLCgamma2. J Exp Med. 2003;198:1539–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Honigberg LA, Smith AM, Sirisawad M, et al. The Bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell activation and is efficacious in models of autoimmune disease and B-cell malignancy. Proc Natl Acad Sci U S A. 2010;107:13075–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wiestner A. The role of B-cell receptor inhibitors in the treatment of patients with chronic lymphocytic leukemia. Haematologica. 2015;100:1495–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Herman SE, Niemann CU, Farooqui M, et al. Ibrutinib-induced lymphocytosis in patients with chronic lymphocytic leukemia: correlative analyses from a phase II study. Leukemia. 2014;28:2188–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cheson BD, Byrd JC, Rai KR, et al. Novel targeted agents and the need to refine clinical end points in chronic lymphocytic leukemia. J Clin Oncol. 2012;30:2820–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Advani RH, Buggy JJ, Sharman JP, et al. Bruton tyrosine kinase inhibitor ibrutinib (PCI-32765) has significant activity in patients with relapsed/refractory B-cell malignancies. J Clin Oncol. 2013;31:88–94.

    Article  CAS  PubMed  Google Scholar 

  15. Byrd JC, Furman RR, Coutre SE, et al. Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. N Engl J Med. 2013;369:32–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Byrd JC, Brown JR, O'Brien S, et al. Ibrutinib versus ofatumumab in previously treated chronic lymphoid leukemia. N Engl J Med. 2014;371:213–23.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Byrd JC, Furman RR, Coutre SE, et al. Three-year follow-up of treatment-naive and previously treated patients with CLL and SLL receiving single-agent ibrutinib. Blood. 2015;125:2497–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Burger JA, Styles L, Kipps TJ. Ibrutinib for chronic lymphocytic leukemia. N Engl J Med. 2016;374:1594–5.

    PubMed  Google Scholar 

  19. Scheers E, Leclercq L, de Jong J, et al. Absorption, metabolism, and excretion of oral (1)(4)C radiolabeled ibrutinib: an open-label, phase I, single-dose study in healthy men. Drug Metab Dispos. 2015;43:289–97.

    Article  PubMed  Google Scholar 

  20. Waldron M, Winter A, Hill BT. Pharmacokinetic and Pharmacodynamic considerations in the treatment of chronic lymphocytic leukemia: Ibrutinib, Idelalisib, and Venetoclax. Clin Pharmacokinet. 2017;56:1255–66.

    Article  CAS  PubMed  Google Scholar 

  21. Marostica E, Sukbuntherng J, Loury D, et al. Population pharmacokinetic model of ibrutinib, a Bruton tyrosine kinase inhibitor, in patients with B cell malignancies. Cancer Chemother Pharmacol. 2015;75:111–21.

    Article  CAS  PubMed  Google Scholar 

  22. de Zwart L, Snoeys J, De Jong J, Sukbuntherng J, Mannaert E, Monshouwer M. Ibrutinib dosing strategies based on interaction potential of CYP3A4 perpetrators using physiologically based pharmacokinetic modeling. Clin Pharmacol Ther. 2016;100:548–57.

    Article  PubMed  Google Scholar 

  23. de Vries R, Smit JW, Hellemans P, et al. Stable isotope-labelled intravenous microdose for absolute bioavailability and effect of grapefruit juice on ibrutinib in healthy adults. Br J Clin Pharmacol. 2016;81:235–45.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Finnes HD, Chaffee KG, Call TG, et al. Pharmacovigilance during ibrutinib therapy for chronic lymphocytic leukemia (CLL)/small lymphocytic lymphoma (SLL) in routine clinical practice. Leuk Lymphoma. 2017;58:1376–83.

    Article  CAS  PubMed  Google Scholar 

  25. Burger JA, Tedeschi A, Barr PM, et al. Ibrutinib as initial therapy for patients with chronic lymphocytic leukemia. N Engl J Med. 2015;373:2425–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Maddocks KJ, Ruppert AS, Lozanski G, et al. Etiology of Ibrutinib therapy discontinuation and outcomes in patients with chronic lymphocytic leukemia. JAMA Oncol. 2015;1:80–7.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Winqvist M, Asklid A, Andersson PO, et al. Real-world results of ibrutinib in patients with relapsed or refractory chronic lymphocytic leukemia: data from 95 consecutive patients treated in a compassionate use program. A study from the Swedish chronic lymphocytic leukemia group. Haematologica. 2016;101:1573–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ibrutinib for relapsed/refractory chronic lymphocytic leukemia: a UK and Ireland analysis of outcomes in 315 patients. Haematologica. 2016;101:1563–72.

    Google Scholar 

  29. Woyach JA, Smucker K, Smith LL, et al. Prolonged lymphocytosis during ibrutinib therapy is associated with distinct molecular characteristics and does not indicate a suboptimal response to therapy. Blood. 2014;123:1810–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jain P, Keating MJ, Wierda WG, et al. Long-term follow-up of treatment with Ibrutinib and rituximab in patients with high-risk chronic lymphocytic leukemia. Clin Cancer Res. 2016; 23(9): 2154–58.

    Google Scholar 

  31. Chanan-Khan A, Cramer P, Demirkan F, et al. Ibrutinib combined with bendamustine and rituximab compared with placebo, bendamustine, and rituximab for previously treated chronic lymphocytic leukaemia or small lymphocytic lymphoma (HELIOS): a randomised, double-blind, phase 3 study. Lancet Oncol. 2016;17:200–11.

    Article  CAS  PubMed  Google Scholar 

  32. Wang ML, Rule S, Martin P, et al. Targeting BTK with ibrutinib in relapsed or refractory mantle-cell lymphoma. N Engl J Med. 2013;369:507–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang ML, Blum KA, Martin P, et al. Long-term follow-up of MCL patients treated with single-agent ibrutinib: updated safety and efficacy results. Blood. 2015;126:739–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dreyling M, Jurczak W, Jerkeman M, et al. Ibrutinib versus temsirolimus in patients with relapsed or refractory mantle-cell lymphoma: an international, randomised, open-label, phase 3 study. Lancet. 2016;387:770–8.

    Article  CAS  PubMed  Google Scholar 

  35. Treon SP, Tripsas CK, Meid K, et al. Ibrutinib in previously treated Waldenstrom's macroglobulinemia. N Engl J Med. 2015;372:1430–40.

    Article  CAS  PubMed  Google Scholar 

  36. Dimopoulos MA, Trotman J, Tedeschi A, et al. Ibrutinib for patients with rituximab-refractory Waldenstrom's macroglobulinaemia (iNNOVATE): an open-label substudy of an international, multicentre, phase 3 trial. Lancet Oncol. 2017;18:241–50.

    Article  CAS  PubMed  Google Scholar 

  37. Noy A, de Vos S, Thieblemont C, et al. Targeting Bruton tyrosine kinase with ibrutinib in relapsed/refractory marginal zone lymphoma. Blood. 2017;129:2224–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wilson WH, Young RM, Schmitz R, et al. Targeting B cell receptor signaling with ibrutinib in diffuse large B cell lymphoma. Nat Med. 2015;21:922–6.

    Article  CAS  PubMed  Google Scholar 

  39. Furman RR, Cheng S, Lu P, et al. Ibrutinib resistance in chronic lymphocytic leukemia. N Engl J Med. 2014;370:2352–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Woyach JA, Furman RR, Liu TM, et al. Resistance mechanisms for the Bruton's tyrosine kinase inhibitor ibrutinib. N Engl J Med. 2014;370:2286–94.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Komarova NL, Burger JA, Wodarz D. Evolution of ibrutinib resistance in chronic lymphocytic leukemia (CLL). Proc Natl Acad Sci U S A. 2014;111:13906–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fama R, Bomben R, Rasi S, et al. Ibrutinib-naive chronic lymphocytic leukemia lacks Bruton tyrosine kinase mutations associated with treatment resistance. Blood. 2014;124:3831–3.

    Article  CAS  PubMed  Google Scholar 

  43. Burger JA, Landau DA, Taylor-Weiner A, et al. Clonal evolution in patients with chronic lymphocytic leukaemia developing resistance to BTK inhibition. Nat Commun. 2016;7:11589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. O'Brien S, Jones JA, Coutre SE, et al. Ibrutinib for patients with relapsed or refractory chronic lymphocytic leukaemia with 17p deletion (RESONATE-17): a phase 2, open-label, multicentre study. Lancet Oncol. 2016;17:1409–18.

    Article  PubMed  Google Scholar 

  45. Farooqui MZ, Valdez J, Martyr S, et al. Ibrutinib for previously untreated and relapsed or refractory chronic lymphocytic leukaemia with TP53 aberrations: a phase 2, single-arm trial. Lancet Oncol. 2015;16:169–76.

    Article  CAS  PubMed  Google Scholar 

  46. Te Raa GD, Kater AP. TP53 dysfunction in CLL: implications for prognosis and treatment. Best Pract Res Clin Haematol. 2016;29:90–9.

    Article  Google Scholar 

  47. Blanco G, Puiggros A, Baliakas P, et al. Karyotypic complexity rather than chromosome 8 abnormalities aggravates the outcome of chronic lymphocytic leukemia patients with TP53 aberrations. Oncotarget. 2016;7:80916–24.

    PubMed  PubMed Central  Google Scholar 

  48. Thompson PA, O'Brien SM, Wierda WG, et al. Complex karyotype is a stronger predictor than del(17p) for an inferior outcome in relapsed or refractory chronic lymphocytic leukemia patients treated with ibrutinib-based regimens. Cancer. 2015;121:3612–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jones D, Woyach JA, Zhao W, et al. PLCG2 C2 domain mutations co-occur with BTK and PLCG2 resistance mutations in chronic lymphocytic leukemia undergoing ibrutinib treatment. Leukemia. 2017;31:1645–7.

    Article  CAS  PubMed  Google Scholar 

  50. Woyach JA, Ruppert AS, Guinn D, et al. BTKC481S-mediated resistance to Ibrutinib in chronic lymphocytic leukemia. J Clin Oncol. 2017;35(13):1437–43. JCO2016702282.

    Article  PubMed  Google Scholar 

  51. Ahn IE, Underbayev C, Albitar A, et al. Clonal evolution leading to ibrutinib resistance in chronic lymphocytic leukemia. Blood. 2017;129:1469–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Albitar A, Ma W, DeDios I, et al. Using high-sensitivity sequencing for the detection of mutations in BTK and PLC gamma 2 genes in cellular and cell- free DNA and correlation with progression in patients treated with BTK inhibitors. Oncotarget. 2017;8:17936–44.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Coutre SE, Furman RR, Flinn IW, et al. Extended treatment with single-agent Ibrutinib at the 420 mg dose leads to durable responses in chronic lymphocytic leukemia/small lymphocytic lymphoma. Clin Cancer Res. 2017;23:1149–55.

    Article  CAS  PubMed  Google Scholar 

  54. O'Brien S, Furman RR, Coutre SE, et al. Ibrutinib as initial therapy for elderly patients with chronic lymphocytic leukaemia or small lymphocytic lymphoma: an open-label, multicentre, phase 1b/2 trial. Lancet Oncol. 2014;15:48–58.

    Article  PubMed  Google Scholar 

  55. Jain P, Keating M, Wierda W, et al. Outcomes of patients with chronic lymphocytic leukemia after discontinuing ibrutinib. Blood. 2015;125:2062–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mato AR, Nabhan C, Barr PM, et al. Outcomes of CLL patients treated with sequential kinase inhibitor therapy: a real world experience. Blood. 2016;128:2199–205.

    Article  CAS  PubMed  Google Scholar 

  57. Chiron D, Di Liberto M, Martin P, et al. Cell-cycle reprogramming for PI3K inhibition overrides a relapse-specific C481S BTK mutation revealed by longitudinal functional genomics in mantle cell lymphoma. Cancer Discov. 2014;4:1022–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Rahal R, Frick M, Romero R, et al. Pharmacological and genomic profiling identifies NF-kappaB-targeted treatment strategies for mantle cell lymphoma. Nat Med. 2014;20:87–92.

    Article  CAS  PubMed  Google Scholar 

  59. Zhao X, Lwin T, Silva A, et al. Unification of de novo and acquired ibrutinib resistance in mantle cell lymphoma. Nat Commun. 2017;8:14920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Stephens DM, Spurgeon SE. Ibrutinib in mantle cell lymphoma patients: glass half full? evidence and opinion. Ther Adv Hematol. 2015;6:242–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Martin P, Maddocks K, Leonard JP, et al. Postibrutinib outcomes in patients with mantle cell lymphoma. Blood. 2016;127:1559–63.

    Article  CAS  PubMed  Google Scholar 

  62. Treon SP, Xu L, Yang G, et al. MYD88 L265P somatic mutation in Waldenstrom's macroglobulinemia. N Engl J Med. 2012;367:826–33.

    Article  CAS  PubMed  Google Scholar 

  63. Treon SP, Xu L, Hunter Z. MYD88 mutations and response to Ibrutinib in Waldenstrom's Macroglobulinemia. N Engl J Med. 2015;373(6):584.

    Article  CAS  PubMed  Google Scholar 

  64. Xu L, Tsakmaklis N, Yang G, et al. Acquired mutations associated with ibrutinib resistance in Waldenstrom Macroglobulinemia. Blood. 2017;129(18):2519–25.

    Article  CAS  PubMed  Google Scholar 

  65. Byrd JC, Harrington B, O'Brien S, et al. Acalabrutinib (ACP-196) in relapsed chronic lymphocytic leukemia. N Engl J Med. 2016;374:323–32.

    Article  CAS  PubMed  Google Scholar 

  66. Walter HS, Rule SA, Dyer MJ, et al. A phase 1 clinical trial of the selective BTK inhibitor ONO/GS-4059 in relapsed and refractory mature B-cell malignancies. Blood. 2016;127:411–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wu J, Liu C, Tsui ST, Liu D. Second-generation inhibitors of Bruton tyrosine kinase. J Hematol Oncol. 2016;9:80.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Tam CS, Opat S, Cull G, et al. Twice daily dosing with the highly specific BTK inhibitor, Bgb-3111, achieves complete and continuous BTK occupancy in lymph nodes, and is associated with durable responses in patients (pts) with chronic lymphocytic leukemia (CLL)/small lymphocytic lymphoma (SLL). Blood. 2016;128: 642.

    Google Scholar 

  69. Tam CS, Trotman J, Opat S, et al. High major response rate, including very good partial responses (VGPR), in patients (pts) with Waldenstrom Macroglobulinemia (WM) treated with the high-ly specific BTK inhibitor Bgb-3111: expansion phase results from an ongoing phase I study. Blood. 2016;128: 1216.

    Google Scholar 

  70. Brown JR, Harb WA, Hill BT, et al. Phase I study of single-agent CC-292, a highly selective Bruton’s tyrosine kinase inhibitor, in relapsed/refractory chronic lymphocytic leukemia. Haematologica. 2016;101:e295–8.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The Authors would like to thank Dr. Panagiotis Baliakas for his critical review of the manuscript and his helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lydia Scarfò .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mattsson, M., Scarfò, L. (2018). BTK Inhibitors: Focus on Ibrutinib and Similar Agents. In: Ferreri, A. (eds) Resistance of Targeted Therapies Excluding Antibodies for Lymphomas. Resistance to Targeted Anti-Cancer Therapeutics, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-319-75184-9_1

Download citation

Publish with us

Policies and ethics