Skip to main content
Log in

Empagliflozin: A Review in Symptomatic Chronic Heart Failure

  • Adis Drug Evaluation
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Empagliflozin (Jardiance®), a sodium-glucose cotransporter 2 inhibitor (SGLT2i) initially developed to treat type 2 diabetes mellitus (T2DM), has also been approved in the EU and USA for the treatment of all adults with symptomatic chronic heart failure (CHF), regardless of their left ventricular ejection fraction (LVEF). In pivotal phase III trials in ambulant patients with symptomatic CHF and mildly-reduced or preserved ejection fraction (EMPEROR-Preserved; LVEF > 40%) or those with symptomatic CHF and reduced ejection fraction (EMPEROR–Reduced; LVEF ≤ 40%), the addition of oral empagliflozin 10 mg/day to standard of care significantly reduced the risk of cardiovascular (CV) death or hospitalization for HF (HHF), as well as that of a number of other outcomes indicative of worsening HF, compared with placebo. The beneficial effect of empagliflozin on CV death/HHF was seen irrespective of the presence or absence of T2DM and regardless of background HF therapies. In addition, empagliflozin significantly improved health-related quality of life (HRQOL) and was generally well tolerated, with an adverse event profile that was generally consistent with that seen in patients with T2DM. Thus, empagliflozin is a valuable treatment option for ambulant patients with symptomatic CHF across a broad LVEF spectrum.

Plain Language Summary

Categorizing chronic heart failure (CHF) according to left ventricular ejection fraction (LVEF) is central to the management of this condition. CHF with a reduced ejection fraction (HFrEF) is characterized by a LVEF ≤ 40%; CHF with a mildly reduced ejection fraction (HFmrEF) is characterized by a LVEF of 41–49%; and CHF with a preserved ejection fraction (HFpEF) is characterized by a LVEF of ≥ 50%. Historically, standard of care treatments for HFrEF have not been effective against HFpEF, which is becoming the most common form of HF. Empagliflozin (Jardiance®) is the first sodium-glucose cotransporter type 2 inhibitor to be approved for the treatment of adults with symptomatic CHF, regardless of their LVEF. Empagliflozin significantly reduced the risk of hospitalization for HF or cardiovascular death in nonhospitalized patients with HFpEF, HFmrEF or HFrEF, regardless of diabetes status and the standard HF therapies they were already taking. Empagliflozin also improved health-related quality of life and was generally well tolerated. Empagliflozin is a valuable treatment option for patients with symptomatic CHF associated with a broad range of LVEFs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Lippi G, Sanchis-Gomar F. Global epidemiology and future trends of heart failure. AME Med J. 2020;5:15.

    Article  Google Scholar 

  2. Simmonds SJ, Cuijpers I, Heymans S, et al. Cellular and molecular differences between HFpEF and HFrEF: a step ahead in an improved pathological understanding. Cells. 2020;9(1):242.

    Article  CAS  PubMed Central  Google Scholar 

  3. Savarese G, Stolfo D, Sinagra G, et al. Heart failure with mid-range or mildly reduced ejection fraction. Nat Rev Cardiol. 2022;19(2):100–16.

    Article  PubMed  Google Scholar 

  4. McDonagh TA, Metra M, Adamo M, et al. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021;42(36):3599–726.

    Article  CAS  PubMed  Google Scholar 

  5. Heidenreich PA, Bozkurt B, Aguilar D, et al. 2022 AHA/ACC/HFSA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Joint Committee on clinical practice guidelines. Circulation. 2022;145(18):e895-1032.

    PubMed  Google Scholar 

  6. Bozkurt B, Coats AJS, Tsutsui H, et al. Universal definition and classification of heart failure: a report of the Heart Failure Society of America, Heart Failure Association of the European Society of Cardiology, Japanese Heart Failure Society and writing committee of the universal definition of heart failure: endorsed by the Canadian Heart Failure Society, Heart Failure Association of India, Cardiac Society of Australia and New Zealand, and Chinese Heart Failure Association. Eur J Heart Fail. 2021;23(3):352–80.

    Article  PubMed  Google Scholar 

  7. Nadar SK, Tariq O. What is heart failure with mid-range ejection fraction? A new subgroup of patients with heart failure. Card Fail Rev. 2018;4(1):6–8.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Coats AJS. Ageing, demographics, and heart failure. Eur Heart J. 2019;21(Suppl L):L4-7.

    Article  Google Scholar 

  9. Lam CSP, Arnott C, Beale AL. Sex differences in heart failure. Eur Heart J. 2019;40(47):3859–68.

    Article  PubMed  Google Scholar 

  10. Roger VL. Epidemiology of heart failure. A contemporary perspective. Circ Res. 2021;128(10):1421–34.

    Article  CAS  PubMed  Google Scholar 

  11. Clark KAA, Velazquez EJ. Heart failure with preserved ejection fraction. Time for a reset. JAMA. 2020;324(15):1506–8.

    Article  PubMed  Google Scholar 

  12. Straw S, McGinlay M, Witte KK. Four pillars of heart failure: contemporary pharmacological therapy for heart failure with reduced ejection fraction. Open Heart. 2021;8(1): e001585.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Heath R, Johnsen H, Strain WD. Emerging horizons in heart failure with preserved ejection fraction: the role of SGLT2 inhibitors. Diabetes Ther. 2022;13(2):241–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mackenzi LM, Pierce KN. New therapies for the treatment of heart failure with preserved ejection fraction. Am J Health Syst Pharm. 2022;79(17):1424–30.

    Article  Google Scholar 

  15. Boehringer Ingelheim International GmbH. Jardiance (empagliflozin): Summary of product characteristics [EU Prescribing information]. 2022. https://www.ema.europa.eu/documents/product-information/jardiance-epar-product-information_en.pdf. Accessed May 18 2022.

  16. Boehringer Ingelheim International GmbH. Jardiance® (empagliflozin tablets), for oral use [US prescribing information]. 2022. https://docs.boehringer-ingelheim.com/Prescribing%20Information/PIs/Jardiance/jardiance.pdf. Accessed Sep 1 2022.

  17. Voors AA, Angermann CE, Teerlink JR, et al. The SGLT2 inhibitor empagliflozin in patients hospitalized for acute heart failure: a multinational randomized trial. Nat Med. 2022;28(3):568–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kosiborod MN, Angermann CE, Collins SP, et al. Effects of empagliflozin on symptoms, physical limitations, and quality of life in patients hospitalized for acute heart failure: results from the EMPULSE trial. Circulation. 2022;146(4):279–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zinman B, Wanner C, Lachin JM, et al. Empaglifozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373(22):2117–28.

    Article  CAS  PubMed  Google Scholar 

  20. Wanner C, Inzucchi SE, Lachin JM, et al. Empaglifozin and progression of kidney disease in type 2 diabetes. N Engl J Med. 2016;375(4):323–34.

    Article  CAS  PubMed  Google Scholar 

  21. Fitchett D, Zinman B, Wanner C, et al. Heart failure outcomes with empagliflozin in patients with type 2 diabetes at high cardiovascular risk: results of the EMPA-REG OUTCOME trial. Eur Heart J. 2016;37(19):1526–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Packer M, Butler J, Filippatos GS, et al. Evaluation of the effect of sodium-glucose co-transporter 2 inhibition with empagliflozin on morbidity and mortality of patients with chronic heart failure and a reduced ejection fraction: rationale for and design of the EMPEROR-Reduced trial. Eur J Heart Fail. 2019;21(10):1270–8.

    Article  CAS  PubMed  Google Scholar 

  23. Packer M, Anker SD, Butler J, et al. Cardiovascular and renal outcomes with empagliflozin in heart failure. N Engl J Med. 2020;383(15):1413–24.

    Article  CAS  PubMed  Google Scholar 

  24. Anker SD, Butler J, Filippatos GS, et al. Evaluation of the effects of sodium-glucose co-transporter 2 inhibition with empagliflozin on morbidity and mortality in patients with chronic heart failure and a preserved ejection fraction: rationale for and design of the EMPEROR-Preserved Trial. Eur J Heart Fail. 2019;21(10):1279–87.

    Article  CAS  PubMed  Google Scholar 

  25. Anker SD, Butler J, Filippatos G, et al. Empagliflozin in heart failure with a preserved ejection fraction. N Engl J Med. 2021;385(16):1451–61.

    Article  CAS  PubMed  Google Scholar 

  26. Pabel S, Hamdani N, Singh J, et al. Potential mechanisms of SGLT2 inhibitors for the treatment of heart failure with preserved ejection fraction. Front Physiol. 2021;12: 752370.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Aguilar-Gallardo JS, Correa A, Contreras JP. Cardio-renal benefits of SGLT2 inhibitors in heart failure with reduced ejection fraction: mechanisms and clinical evidence. Eur Heart J Cardiovasc Pharmacother. 2021;8(3):311–21.

    Article  Google Scholar 

  28. Lopaschuk GD, Verma S. Mechanisms of cardiovascular benefits of sodium glucose co-transporter 2 (SGLT2) inhibitors: a state-of-the-art review. JACC Basic Transl Sci. 2020;5(6):632–44.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Del Vecchio L, Beretta A, Jovane C, et al. A role for SGLT-2 inhibitors in treating non-diabetic chronic kidney disease. Drugs. 2021;81(13):1–21.

    Google Scholar 

  30. Novo G, Guarino T, Di Lisi D, et al. Effects of SGLT2 inhibitors on cardiac structure and function. Heart Fail Rev. 2022. https://doi.org/10.1007/s10741-022-10256-4.

    Article  PubMed  Google Scholar 

  31. Iborra-Egea O, Santiago-Vacas E, Yurista SR, et al. Unraveling the molecular mechanism of action of empagliflozin in heart failure with reduced ejection fraction with or without diabetes. JACC Basic Transl Sci. 2019;4(7):831–40.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Bayes-Genis A, Iborra-Egea O, Spitaleri G, et al. Decoding empagliflozin’s molecular mechanism of action in heart failure with preserved ejection fraction using artificial intelligence. Sci Rep. 2021;11(1):12025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Connelly KA, Zhang Y, Visram A, et al. Diastolic function in a nondiabetic rodent model of heart failure with preserved ejection fraction. JACC Basic Transl Sci. 2019;4(1):27–37.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Anker SD, Butler J, Filippatos G, et al. Effect of empagliflozin on cardiovascular and renal outcomes in patients with heart failure by baseline diabetes status: results from the EMPEROR-Reduced trial. Circulation. 2021;143(4):337–49.

    Article  CAS  PubMed  Google Scholar 

  35. Packer M, Anker SD, Butler J, et al. Influence of neprilysin inhibition on the efficacy and safety of empagliflozin in patients with chronic heart failure and a reduced ejection fraction: the EMPEROR-Reduced trial. Eur Heart J. 2021;42(6):671–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ferreira JP, Zannad F, Pocock SJ, et al. Interplay of mineralocorticoid receptor antagonists and empagliflozin in heart failure: EMPEROR-Reduced. J Am Coll Cardiol. 2021;77(11):1397–407.

    Article  CAS  PubMed  Google Scholar 

  37. Zannad F, Ferreira JP, Pocock SJ, et al. Cardiac and kidney benefits of empagliflozin in heart failure across the spectrum of kidney function: insights from EMPEROR-Reduced. Circulation. 2021;143(4):310–21.

    Article  CAS  PubMed  Google Scholar 

  38. Ferreira JP, Anker SD, Butler J, et al. Impact of anaemia and the effect of empagliflozin in heart failure with reduced ejection fraction: findings from EMPEROR-Reduced. Eur J Heart Fail. 2022;24(4):708–15.

    Article  CAS  PubMed  Google Scholar 

  39. Butler J, Anker SD, Filippatos G, et al. Empagliflozin and health-related quality of life outcomes in patients with heart failure with reduced ejection fraction: the EMPEROR-Reduced trial. Eur Heart J. 2021;42(13):1203–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Januzzi JL, Zannad F, Anker SD, et al. Prognostic importance ofNT-proBNP and effect of empagliflozin in the EMPEROR-Reduced trial. J Am Coll Cardiol. 2021;78(13):1321–32.

    Article  CAS  PubMed  Google Scholar 

  41. Böhm M, Anker SD, Butler J, et al. Empagliflozin improves cardiovascular and renal outcomes in heart failure, irrespective of systolic blood pressure. J Am Coll Cardiol. 2021;78(13):1337–48.

    Article  PubMed  Google Scholar 

  42. Packer M, Januzzi JL, Ferreira JP, et al. Concentration-dependent clinical and prognostic importance of high-sensitivity cardiac troponin T in heart failure and a reduced ejection fraction and the influence of empagliflozin: the EMPEROR-Reduced trial. Eur J Heart Fail. 2021;23(9):1–10.

    Article  Google Scholar 

  43. Verma S, Dhingra NK, Butler J, et al. Empagliflozin in the treatment of heart failure with reduced ejection fraction in addition to background therapies and therapeutic combinations (EMPEROR-Reduced): a post-hoc analysis of a randomised, double-blind trial. Lancet Diabetes Endocrinol. 2022;10(1):35–45.

    Article  CAS  PubMed  Google Scholar 

  44. Packer M, Anker SD, Butler J, et al. Effect of Empagliflozin on the clinical stability of patients with heart failure and a reduced ejection fraction: the EMPEROR-Reduced trial. Circulation. 2021;143(4):326–36.

    Article  PubMed  Google Scholar 

  45. Butler J, Filippatos G, Saddiqi TJ, et al. Empagliflozin, health status, and quality of life outcomes in patients with heart failure and preserved ejection fraction: the EMPEROR-Preserved trial. Circulation. 2022;145:184–93.

    Article  CAS  PubMed  Google Scholar 

  46. Healio. Empagliflozin beneficial in ‘true’ HFpEF with higher ejection fraction. 2021. https://www.healio.com/news/cardiology/20211115/empagliflozin-beneficial-in-true-hfpef-with-higher-ejection-fraction Accessed 1 Sep 2022.

  47. Packer M, Butler J, Zannad F, et al. Effect of empagliflozin on worsening heart failure events in patients with heart failure and preserved ejection fraction: EMPEROR-Preserved trial. Circulation. 2021;144(16):1284–94.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Butler J, Siddiqi TJ, Gerasimos Filippatos G, et al. Early benefit with empagliflozin in heart failure with preserved ejection fraction: insights from the EMPEROR-Preserved trial. Eur J Heart Fail. 2022;24(2):245–8.

    Article  CAS  PubMed  Google Scholar 

  49. Packer M, Butler J, Filippatos G, et al. Design of a prospective patient-level pooled analysis of two parallel trials of empagliflozin in patients with established heart failure. Eur J Heart Fail. 2020;22(12):2393–8.

    Article  CAS  PubMed  Google Scholar 

  50. Butler J, Packer M, Filippatos G, et al. Effect of empagliflozin in patients with heart failure across the spectrum of left ventricular ejection fraction. Eur Heart J. 2022;43(5):416–26.

    Article  CAS  PubMed  Google Scholar 

  51. Kluger AY, Tecson KM, Barbin CM, et al. Cardiorenal outcomes in the CANVAS, DECLARE-TIMI 58, and EMPA-REG OUTCOME trials: a systematic review. Rev Cardiovasc Med. 2018;19(2):41–9.

    PubMed  Google Scholar 

  52. Boehringer Ingelheim. Jardiance® (empagliflozin) becomes the first and only approved treatment in Europe for adults with symptomatic chronic heart failure regardless of ejection fraction [media release]. 8 March 2022. https://www.boehringer-ingelheim.com.

  53. Abraham WT, Ponikowski P, Brueckmann M, et al. Rationale and design of the EMPERIAL-Preserved and EMPERIAL-Reduced trials of empagliflozin in patients with chronic heart failure. Eur J Heart Fail. 2019;21(7):932–42.

    Article  CAS  PubMed  Google Scholar 

  54. Abraham WT, Lindenfeld J, Ponikowski P, et al. Effect of empagliflozin on exercise ability and symptoms in heart failure patients with reduced and preserved ejection fraction, with and without type 2 diabetes. Eur Heart J. 2021;42(6):700–10.

    Article  CAS  PubMed  Google Scholar 

  55. Petrie MC, Lee MM, Lang NN. EMPEROR-Reduced reigns while EMPERIAL whimpers. Eur Heart J. 2021;42(6):711–4.

    Article  PubMed  Google Scholar 

  56. Packer M, Butler J, Zannad F, et al. Empagliflozin and major renal outcomes in heart failure. N Engl J Med. 2021;385(16):1531–3.

    Article  PubMed  Google Scholar 

  57. Zannad F, Ferreira JP, Gregson J, et al. Early changes in estimated glomerular filtration rate post-initiation of empagliflozin in EMPEROR-Reduced. Eur J Heart Fail. 2022. https://doi.org/10.1002/ejhf.2578.

    Article  PubMed  Google Scholar 

  58. McMurray JJV, Solomon SD, Inzucchi SE, et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med. 2019;381(21):1995–2008.

    Article  CAS  PubMed  Google Scholar 

  59. Aimo A, Senni M, Barison A, et al. Management of heart failure with preserved ejection fraction: from neurohormonal antagonists to empagliflozin. Heart Fail Rev. 2022. https://doi.org/10.1007/s10741-022-10228-8.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Boehringer Ingelheim Pharmaceuticals Inc. US FDA approves Jardiance® (empagliflozin) to treat adults with heart failure regardless of left ventricular ejection fraction [media release]. 24 Feb 2022. https://www.boehringer-ingelheim.us.

  61. Blair HA. Dapagliflozin: a review in symptomatic heart failure with reduced ejection fraction. Am J Cardiovasc Drugs. 2021;21(6):701–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. European Medicines Agency. Invokana (canagaliflozin): EU summary of product characteristics. 2018. https://www.ema.europa.eu/en/documents/product-information/invokana-epar-product-information_en.pdf. Accessed 1 Sep 2022.

  63. Koufakis T, Mustafa OG, Tsimihodimos V, et al. Insights into the results of sotagliflozin cardiovascular outcome trials: is dual inhibition the cherry on the cake of cardiorenal protection? Drugs. 2021;81(12):1365–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. European Medicines Agency. Zynquista (sotagliflozin): EU summary of product characteristics. 2019. https://www.ema.europa.eu/en/documents/product-information/zynquista-epar-product-information_en.pdf. Accessed 1 Sep 2022.

  65. Nassif ME, Windsor SL, Kosiborod MN, et al. The SGLT2 inhibitor dapagliflozin in heart failure with preserved ejection fraction: a multicenter randomized trial. Nat Med. 2021;27(11):1954–60.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Spertus JA, Birmingham MC, Nassif M, et al. The SGLT2 inhibitor canagliflozin in heart failure: the CHIEF-HF remote, patient-centered randomized trial. Nat Med. 2022;28(4):809–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Solomon SD, de Boer RA, DeMets D, et al. Dapagliflozin in heart failure with preserved and mildly reduced ejection fraction: rationale and design of the DELIVER trial. Eur J Heart Fail. 2021;23(7):1217–25.

    Article  CAS  PubMed  Google Scholar 

  68. Qiu M, Ding LL, Zhou HR. Comparative efficacy of five SGLT2i on cardiorenal events: a network meta-analysis based on ten CVOTs. Am J Cardiovasc Drugs. 2022;22(1):69–81.

    Article  CAS  PubMed  Google Scholar 

  69. Zannad F, Ferreira JP, Pocock SJ, et al. SGLT2 inhibitors in patients with heart failure with reduced ejection fraction: a metaanalysis of the EMPEROR-Reduced and DAPA-HF trials. Lancet. 2020;396(10254):819–29.

    Article  PubMed  Google Scholar 

  70. Aimo A, Pateras K, Stamatelopoulos K, et al. Relative efficacy of sacubitril-valsartan, vericiguat, and SGLT2 inhibitors in heart failure with reduced ejection fraction: a systematic review and network meta-analysis. Cardiovasc Drugs Ther. 2021;35(5):1067–76.

    Article  CAS  PubMed  Google Scholar 

  71. Sindone AP, De Pasquale C, Amerena J, et al. Consensus statement on the current pharmacological prevention and management of heart failure. Med J Aust. 2022;217(4):212–7.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Osenenko KM, Kuti E, Deighton AM, et al. Burden of hospitalization for heart failure in the United States: a systematic literature review. J Manag Care Spec Pharm. 2022;28(2):157–67.

    PubMed  Google Scholar 

  73. Liao C-T, Yang C-T, Kuo F-H, et al. Cost-effectiveness evaluation of add-on empagliflozin in patients with heart failure and a reduced ejection fraction from the healthcare system’s perspective in the Asia-Pacific region. Front Cardiovasc Med. 2021;8: 750381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. National Institute of Health and Care Excellence. Empagliflozin for treating chronic heart failure with reduced ejection fraction. Technology appraisal guidance [TA773]. http://www.nice.org.uk. Accessed 1 Sep 2022.

  75. Nauck MA. Update on developments with SGLT2 inhibitors in the management of type 2 diabetes. Drug Des Devel Ther. 2014;8:1335–80.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Fathi A, Vickneson K, Singh JS. SGLT2 inhibitors; more than just glycosuria and diuresis. Heart Fail Rev. 2021;26(3):623–42.

    Article  CAS  PubMed  Google Scholar 

  77. Omar M, Jensen J, Ali M, et al. Associations of empagliflozin with left ventricular volumes, mass, and function in patients with heart failure and reduced ejection fraction: a substudy of the Empire HF randomized clinical trial. JAMA Cardiology. 2021;6(7):836–40.

    Article  PubMed  Google Scholar 

  78. Santos-Gallego CG, Vargas-Delgado AP, Requena-Ibanez JA, et al. Randomized trial of empagliflozin in nondiabetic patients with heart failure and reduced ejection fraction. J Am Coll Cardiol. 2021;77(3):243–55.

    Article  CAS  PubMed  Google Scholar 

  79. Lee MMY, Brooksbank KJM, Wetherall K, et al. Effect of empagliflozin on left ventricular volumes in patients with type 2 diabetes, or prediabetes, and heart failure with reduced ejection fraction (SUGAR-DM-HF). Circulation. 2021;143(6):516–25.

    Article  CAS  PubMed  Google Scholar 

  80. Omar M, Jensen J, Frederiksen PH, et al. Effect of empagliflozin on hemodynamics in patients with heart failure and reduced ejection fraction. J Am Coll Cardiol. 2020;76(23):2740–51.

    Article  CAS  PubMed  Google Scholar 

  81. Requena-Ibanez JA, Santos-Gallego CG, Rodriguez-Cordero A, et al. Mechanistic insights of empagliflozin in nondiabetic patients with HFrEF: from the EMPA-TROPISM study. JACC Heart Fail. 2021;9(8):578–89.

    Article  PubMed  Google Scholar 

  82. Omar M, Jensen J, Burkhoff D, et al. Effect of empagliflozin on blood volume redistribution in patients with chronic heart failure and reduced ejection fraction: an analysis from the Empire HF randomized clinical trial. Circulation. 2022;15(3): e009156.

    CAS  PubMed  Google Scholar 

  83. Kolwelter J, Bosch A, Jung S, et al. Effects of the sodium-glucose cotransporter 2 inhibitor empagliflozin on vascular function in patients with chronic heart failure. ESC Heart Fail. 2021;8(6):5327-37.

  84. Jensen J, Omar M, Kistorp C, et al. Effects of empagliflozin on estimated extracellular volume, estimated plasma volume, and measured glomerular filtration rate in patients with heart failure (Empire HF Renal): a prespecified substudy of a double-blind, randomised, placebo-controlled trial. Lancet Diabetes Endocrinol. 2021;9(2):106–16.

    Article  CAS  PubMed  Google Scholar 

  85. Doehner W, Anker SD, Butle J, et al. Uric acid and sodium-glucose cotransporter-2 inhibition with empagliflozin in heart failure with reduced ejection fraction: the EMPEROR-reduced trial. Eur Heart J. 2022;43(36):3435–46.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Ferreira JP, Zannad F, Butler J, et al. Empagliflozin and serum potassium in heart failure: an analysis from EMPEROR-Pooled. Eur Heart J. 2022;43(31):2984–93.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Scheen AJ. Pharmacodynamics, efficacy and safety of sodium-glucose co-transporter type 2 (SGLT2) inhibitors for the treatment of type 2 diabetes mellitus. Drugs. 2015;75(1):33–59.

    Article  CAS  PubMed  Google Scholar 

  88. Mordi NA, Mordi IR, Singh JS, et al. Renal and cardiovascular effects of SGLT2 inhibition in combination with loop diuretics in patients with type 2 diabetes and chronic heart failure: the RECEDE-CHF trial. Circulation. 2020;142(18):1713–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

During the peer review process, the manufacturer of empagliflozin was also offered an opportunity to review this article. Changes resulting from comments received were made on the basis of scientific and editorial merit.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James E. Frampton.

Ethics declarations

Funding

The preparation of this review was not supported by any external funding.

Authorship and Conflict of interest

James E. Frampton is a salaried employee6 of Adis International Ltd/Springer Nature, and declares no relevant conflicts of interest. All authors contributed to the review and are responsible for the article content.

Ethics approval, Consent to participate, Consent to publish, Availability of data and material, Code availability

Not applicable.

Additional information

The manuscript was reviewed by: M. M. Y. Lee, School of Cardiovascular & Metabolic Health, University of Glasgow, UK; B. Pitt, Department of Internal Medicine, Division of Cardiology, University of Michigan School of Medicine, Ann Arbor, MI, USA; J.-Y. Sun, Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTX 505 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frampton, J.E. Empagliflozin: A Review in Symptomatic Chronic Heart Failure. Drugs 82, 1591–1602 (2022). https://doi.org/10.1007/s40265-022-01778-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-022-01778-0

Navigation