Skip to main content
Log in

Genetic Factors Influencing Warfarin Dose in Han Chinese Population: A Systematic Review and Meta-Analysis of Cohort Studies

  • Systematic Review
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Objective

To investigate the association of single nucleotide polymorphisms (SNPs) of various genes known to influence mean daily warfarin dose (MDWD) in the Han Chinese population.

Methods

The study is a systematic review and meta-analysis. Selected studies retrieved by searching Pubmed, Embase (Ovid), Medline, CNKI, Wanfang data, and SinoMed (from their inception to 31 August 2022) for the cohort studies assessing genetic variations that may possibly influence MDWD in Chinese patients were included.

Result

A total of 46 studies including a total of 10,102 Han Chinese adult patients were finally included in the meta-analysis. The impact of 20 single nucleotide polymorphisms (SNPs) in 8 genes on MDWD was analyzed. The significant impact of some of these SNPs on MDWD requirements was demonstrated. Patients with CYP4F2 rs2108622 TT, EPHX1 rs2260863 GC, or NQO1 rs1800566 TT genotype required more than 10% higher MDWD. Furthermore, patients with ABCB1 rs2032582 GT or GG, or CALU rs2290228 TT genotype required more than 10% lower MDWD. Subgroup analysis showed that patients with EPHX1 rs2260863 GC genotype required 7% lower MDWD after heart valve replacement (HVR).

Conclusion

This is the first systematic review and meta-analysis assessing the association between single nucleotide polymorphisms (SNPs) of various genes known to influence MDWD besides CYP2C9 and VKORC1 in the Han Chinese population. CYP4F2 (rs2108622), GGCX (rs12714145), EPHX1 (rs2292566 and rs2260863), ABCB1 (rs2032582), NQO1 (rs1800566), and CALU (rs2290228) SNPs might be moderate factors affecting MDWD requirements.

Registered information

PROSPERO International Prospective Register of Systematic Reviews (CRD42022355130).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Li W, Zhao P, Chen L, Lai X, Shi G, Li L, et al. Impact of CYP2C9, VKORC1, ApoE and ABCB1 polymorphisms on stable warfarin dose requirements in elderly Chinese patients. Pharmacogenomics. 2020;21(2):101–10.

    Article  CAS  PubMed  Google Scholar 

  2. Deepak V, Howard LM, Charles E, Brian FG. The pharmacogenetics of coumarin therapy. Pharmacogenomics. 2005;6(5):503–13.

    Article  Google Scholar 

  3. Johnson JA, Caudle KE, Gong L, Whirl-Carrillo M, Stein CM, Scott SA, et al. Clinical pharmacogenetics implementation Consortium (CPIC) guideline for pharmacogenetics-guided warfarin dosing: 2017 update. Clin Pharmacol Ther. 2017;102:397–404.

    Article  CAS  PubMed  Google Scholar 

  4. Takahashi H, Wilkinson GR, Nutescu EA, Morita T, Ritchie MD, Scordo MG, et al. Different contributions of polymorphisms in VKORC1 and CYP2C9 to intra-and inter-population differences in maintenance dose of warfarin in Japanese, Caucasians and African-Americans. Pharmacogenet Genom. 2006;16(2):101–10.

    Article  CAS  Google Scholar 

  5. Liu J, Guan H, Zhou L, Cui Y, Cao W, Wang L. Impact of gene polymorphism on the initiation and maintenance phases of warfarin therapy in Chinese patients undergoing heart valve replacement. Am J Transl Res. 2019;11(4):2507–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Ming Ta Michael Lee, Teri E Klein. Pharmacogenetics of warfarin: challenges and opportunities. J Hum Genet 2013; 58(6): 334-8.

  7. Tian L, Zhang J, Xiao S, Huang J, Zhang Y, Shen J. Impact of polymorphisms of the GGCX gene on maintenance warfarin dose in Chinese populations: systematic review and meta-analysis. Meta Gene. 2015;5:43–54.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Sun Y, Zhitong Wu, Li S, Qin X, Li T, Xie Li, et al. Impact of gamma-glutamyl carboxylase gene polymorphisms on warfarin dose requirement: a systematic review and meta-analysis. Thromb Res. 2015;135(4):739–47.

    Article  CAS  PubMed  Google Scholar 

  9. Wanying Yu, Sun X, Wadelius M, Huang L, Peng C, Ma W, et al. Influence of APOE gene polymorphism on interindividual and interethnic warfarin dosage requirement: a systematic review and meta-analysis. Cardiovasc Ther. 2016;34(5):297–307.

    Article  Google Scholar 

  10. Pautas E, Moreau C, Gouin-Thibault I, Golmard J-L, Mahé I, Legendre C, et al. Genetic factors (VKORC1, CYP2C9, EPHX1, and CYP4F2) are predictor variables for warfarin response in very elderly, frail inpatients. Clin Pharmacol Ther. 2010;87(1):57–64.

    Article  CAS  PubMed  Google Scholar 

  11. Mia W, Leslie YC, Niclas E, Suzannah B, Jilur G, Claes W, et al. Association of warfarin dose with genes involved in its action and metabolism. Hum Genet. 2007;121:23–34.

    Article  Google Scholar 

  12. Adam B, Shitalben RP, Minoli AP, Richard TC, Rick AK, Larisa HC. Effect of NQO1 and CYP4F2 genotypes on warfarin dose requirements in Hispanic–Americans and African–Americans. Pharmacogenomics. 2012;13(16):1925–35.

    Article  Google Scholar 

  13. Roxana D, Eric RG, Ben B, Larisa HC, Julie AJ, Teri EK, et al. Genetic variant in folate homeostasis is associated with lower warfarin dose in African Americans. Blood. 2014;124(14):2298–305.

    Article  Google Scholar 

  14. Justin BK, Lauren ES, Heidi ES, Rick AK, Larisa HC, Jason HK. Warfarin pharmacogenomics in diverse populations. Pharmacotherapy. 2017;37(9):1150–63.

    Article  Google Scholar 

  15. Wells G, Shea B, Oconnell D, Peterson J, Welch V, Losos MTP. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. The Ottawa Hospital 2019.

  16. Jonatan DL, Lennart H, Marine LA, Anders R. Influence of CYP2C9 genotype on warfarin dose requirements-a systematic review and meta-analysis. Eur J Clin Pharmacol. 2009;65(4):365–75.

    Article  Google Scholar 

  17. Liang R, Wang C, Zhao H, Huang J, Dayi Hu, Sun Y. Influence of CYP4F2 genotype on warfarin dose requirement-a systematic review and meta-analysis. Thromb Res. 2012;130(1):38–44.

    Article  CAS  PubMed  Google Scholar 

  18. Julian PTH, Simon GT. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21(11):1539–58.

    Article  Google Scholar 

  19. Qingqing Xu, Zhang S, Chaoneng Wu, Xiong Y, Niu J, Li F, et al. Genetic associations with stable warfarin dose requirements in han chinese patients. J Cardiovasc Pharmacol. 2021;78(1):e105–11.

    Article  Google Scholar 

  20. Wang M, Zhu T, Guojun Yu, Huo Q, Yang Y. The effect of CYP4F2 polymorphism on initial warfarin dose in patients with heart valve replacement. J Sichuan Univ. 2021;52(1):129–33.

    Google Scholar 

  21. Wang L, Chen F, Shi W, Chu G, Zhang J. Effect of ABCB1 gene polymorphism on steady-state warfarin dose in elderly AF patients. Chin J Geriatr Heart Brain Vessel Dis. 2021;23(4):383–6.

    Google Scholar 

  22. Lin X, Chen H, Ni Le, Yunqiang Yu, Luo Z, Liao L. Effects of EPHX1 rs2260863 polymorphisms on warfarin maintenance dose in very elderly, frail Han-Chinese population. Pharmacogenomics. 2020;21(12):863–70.

    Article  CAS  PubMed  Google Scholar 

  23. Cheng X, Bai S. Correlation between CYP2C9, APOE gene polymorphisms and stable warfarin and model prediction dose. Chin J Clin Thorac Cardiovasc Surg. 2019;26(6):543–7.

    Google Scholar 

  24. Fang S, Lin W, Lin R, Wang C. Relationship of VKORC1-3673G>A, CYP2C9*3, CYP4F2 rs2108622 and CYP2C19*2 Genetic polymorphisms and maintenance warfarin dose requirement in Han-Chinese patients with atrial fibrillation. Chin J Mod Appl Pharm. 2018;35(9):1379–83.

    Google Scholar 

  25. Li J, Yang W, Xie Z, Kun Yu, Chen Y, Cui K. Impact of VKORC1, CYP4F2 and NQO1 gene variants on warfarin dose requirement in Han Chinese patients with catheter ablation for atrial fibrillation. BMC Cardiovasc Disord. 2018;18(1):96.

    Article  PubMed  PubMed Central  Google Scholar 

  26. He S, Zhang H, Cao Y, Nian F, Chen H, Chen W, et al. Association between apolipoprotein E genotype and warfarin response during initial anticoagulation. Biomed Pharmacother. 2018;101:251–6.

    Article  CAS  PubMed  Google Scholar 

  27. Ma J, Dong B, Ma J, Li S, Liu X. Influence of CYP2C9 and CYP4F2 gene polymorphisms on stable warfarin dose after cardiac valve replacement. J Pract Med. 2017;33(7):1120–3.

    Google Scholar 

  28. Liu R, Cao J, Zhang Q, Shi X, Pan X, Dong R. Clinical and genetic factors associated with warfarin maintenance dose in northern Chinese patients with mechanical heart valve replacement. Medicine (Baltimore). 2017;96(2): e5658.

    Article  PubMed  Google Scholar 

  29. Chen H, Bo Yu, Tan Q, Li Y, Qin L, Yang Y. Anticoagulation effect among patients with different CYP2C9 and GGCX gentypes who received mechanical heart valve prostheses replacement. Chin J Mod Med. 2017;27(18):62–5.

    Google Scholar 

  30. Jiang N, Haining Ju, Jiang B, Wang Y, Li Y. Effects of CYP2C9, CYP4F2, GGCX and VKORC1 polymorphisms on warfarin dose in patients with atrial fibrillation. Chin Hosp Pharm J. 2016;36(7):574–7.

    CAS  Google Scholar 

  31. Liu R, Zhang K, Gong Z-Z, Shi X, Zhang Q, Pan X, et al. Association of apolipoprotein E (APOE) polymorphisms with warfarin maintenance dose in a northern Han Chinese population. Lipids Health Dis. 2016;15:34.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Liu Y, Zhang K, Pan X, Dong R. Correlation between epoxide hydrolase 1 polymorphisms and warfarin maintenance dose in North Chinese Han population. J Chin Pract Diagn Ther. 2016;30(1):31–4.

    Google Scholar 

  33. Zhiwei Z. Influence of GGCX rs11676382, rs12714145 and rs67988001 genetic polymorphisms on warfarin dose. Fujian Med Univ. 2015;2:1–35.

    Google Scholar 

  34. Peng J. Influence of genetic polymorphisms on warfarin stable dose in Han Chinese patients with mechanical heart valve replacement. Centr South Univ. 2014;2:1–67.

    Google Scholar 

  35. Zhuang W, Depei Wu, Wang Z. Influence of warfarin related genes and non-genetic factors on administrative dose in Shanghai area. Chin J Hematol. 2014;35(1):13–7.

    CAS  Google Scholar 

  36. Chen J, Shao L, Gong L, Luo F, Wang J, Shi Yi, et al. A pharmacogenetics-based warfarin maintenance dosing algorithm from Northern Chinese patients. PLoS ONE. 2014;9(8): e105250.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Songhua Y. Influence of CYP2C9, VKORC1 and CYP4F2 genetic polymorphisms on warfarin dosage of Han population in Yunnan province. The First Affiliated Hospital of Kunming Medical University 2014.

  38. Zhang Y, Liang X, Dong F, Zheng Z, Xin Hu, Li K, et al. Effect of CYP4F2 polymorphism on warfarin anticoagulant in Chinese population. Clin Med J. 2014;12(1):41–5.

    Google Scholar 

  39. Sujun F. Effects of CYP2C19*2 and CYP4F2 genetic polymorphisms on maintenance dose and steady state concentration of warfarin. Fujian Med Univ 2014.

  40. Tan M, Cui W, Chen F, Mei Y, Gao Y. The influence of CYP4F2 (rs2108622) gene polymorphism on the warfarin dose in old patients. Int J Lab Med. 2014;35(11):1400–4.

    CAS  Google Scholar 

  41. Jiajia L. Association between APOE genepolymorphism and the dose for warfarin maintenance. WanNan Medical College 2014.

  42. MI Like zati-wufuer. The GGCX gene polymorphism and the relationship on warfarin stable dosage in Xinjiang Han Nationality. Xinjiang Med Univ 2014.

  43. Lou Y, Han L, Li Y, Zhang X, Liu Z, Tang M, et al. Impact of six genetic polymorphisms on warfarin maintenance dose variation in Chinese Han population. Chin J Med Genet. 2014;31(3):367–71.

    CAS  Google Scholar 

  44. Li W, Bingying Xu, Deng J, Long R, Lin S, Guo G. Relationship between genetic polymorphism of GGCX (rs699664) and warfarin dose requirments in Yunnan Han population. Mod Diagn Treat. 2014;25(14):3121–3.

    CAS  Google Scholar 

  45. Tan S, Li Z, Zhang W, Song G, Liu L, Peng J, et al. Cytochrome P450 oxidoreductase genetic polymorphisms A503V and rs2868177 do not significantly affect warfarin stable dosage in Han-Chinese patients with mechanical heart valve replacement. Eur J Clin Pharmacol. 2013;69(10):1769–75.

    Article  CAS  PubMed  Google Scholar 

  46. Luo Z, Jiang M, Zhang Z. The association of the CYP4F2 rs2108622 gene polymerphism with stable warfarin dose. Jiangxi Med J. 2013;48(4):312–5.

    CAS  Google Scholar 

  47. Liang Y, Chen Z, Guo G, Dong X, We C, Li He, et al. Association of genetic polymorphisms with warfarin dose requirements in Chinese patients. Genet Test Mol Biomarkers. 2013;17(12):932–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ting Z. The correaltion of CYP2C9, VKORC1, CYP4F2 polymorphisms with warfarin dose in Fujian Han population. Fujian Med Univ 2013.

  49. Yinqiang L. The research of individualized anticoagulation for warfarin after heart valve replacement. Kunming Med Univ 2013.

  50. Liang R, Li L, Li C, Gao Y, Liu W, Dayi Hu, et al. Impact of CYP2C9*3, VKORC1-1639, CYP4F2 rs2108622 genetic polymorphism and clinical factors on warfarin maintenance dose in Han-Chinese patients. J Thromb Thrombolysis. 2012;34(1):120–5.

    Article  CAS  PubMed  Google Scholar 

  51. Zhang H, Luo W, Fang H, Yang X, Lianhong Xu, Ma S. Influence of VKORC1, CYP2C9, CYP4F2 and EPHX1 Gene polymorphisms on warfarin dose. Chin Pharm. 2012;23(24):3201–5.

    CAS  Google Scholar 

  52. Zhang H, Fang H, Yang X, Luo W, Lianhong Xu, Ma S. Association of PROC genetic polymorphism with warfarin dose. Chin Pharm J. 2012;47(21):1741–5.

    CAS  Google Scholar 

  53. Li J, Ma G, Zhu S, Yan H, Yongbing Wu, Jianjun Xu. Correlation between single nucleotide polymorphisms in CYP4F2 and warfarin dosing in Chinese valve replacement patients. J Cardiothorac Surg. 2012;7:97.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Wei M, Ye F, Xie D, Zhu Y, Zhu J, Tao Y, et al. A new algorithm to predict warfarin dose from polymorphisms of CYP4F2, CYP2C9 and VKORC1 and clinical variables: derivation in Han Chinese patients with non valvular atrial fibrillation. Thromb Haemost. 2012;107(6):1083–91.

    Article  CAS  PubMed  Google Scholar 

  55. Zhu J, Wei M, Zhu Y, Xie D, Feng Yu, Ye F, et al. Effect of CYP4F2, CYP2C9 and VKORC1 genetic polymorphisms on maintenance dosage of warfarin in Chinese Han nationality patients with non-valve atrial fibrillation. Chin Pharm. 2012;23(44):4161–4.

    CAS  Google Scholar 

  56. Luo B, Zhimin Fu, Meng C, Wen D, Zhao P. Correlation between warfarin maintenance and mEH ApoE gene polymorphism after valve replacement. Zhejiang Clin Med J. 2012;14(7):777–9.

    Google Scholar 

  57. Wang Z, Yang D, Li Y, Yuan B, Yuan H, Liu Y. Effect of cytochrome P450 4F2 gene polymorphism on warfarin dose. Guangdong Med J. 2011;32(23):3092–4.

    Google Scholar 

  58. Jiehui L. The correlation study of the warfarin usage of patients after heart valve replacements and the SNPs of CYP4F2. The Second Affiliated Hospital of Nanchang University 2011.

  59. Huang S, Chen B, Xiang D, Huang L, An B, Li G. Association between apolipoprotein E gene polymorphism and the dose for warfarin maintenance. J Cent South Univ (Med Sci). 2011;36(3):212–6.

    CAS  Google Scholar 

  60. Gang G. Yunnan Han population GGCX gene polymorphism and sarfarin dose study of the correlation. Kunming Med Univ 2011.

  61. Huang S, Xiang D, Chen B, Huang L, An B, Li G. Correlation between EPHX1 Polymorphism and Warfarin Maintenance Dosage. Tianjin Med J. 2011;39(10):887–9.

    CAS  Google Scholar 

  62. Cen H, Zeng W, Leng X, Huang M, Chen X, Li J, et al. CYP4F2 rs2108622: a minor significant genetic factor of warfarin dose in Han Chinese patients with mechanical heart valve replacement. Br J Clin Pharmacol. 2010;70(2):234–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Martina T, Mark E, Fernando R, Andre GU, Ron HNS, Albert H, et al. A genome-wide association study of acenocoumarol maintenance dosage. Hum Mol Genet. 2009;18(19):3758–68.

    Article  Google Scholar 

  64. Marianne KK, Kari BFH, Runa MG, Camilla S, Sigrid N, Mimi SO, et al. Genetic variation of VKORC1 and CYP4F2 genes related to warfarin maintenance dose in patients with myocardial infarction. J Biomed Biotechnol. 2011;2011: 739751.

    Google Scholar 

  65. Michael Lee MT, Chien-Hsiun C, Ching-Heng C, Liang-Suei L, Hui-Ping C, Ying-Ting C, et al. Pharmacogenomics. 2009;10(12):1905–13.

    Article  Google Scholar 

  66. Zhang J, Chen Z, Chen C. Impact of CYP2C9, VKORC1 and CYP4F2 genetic polymorphisms on maintenance warfarin dosage in Han-Chinese patients: a systematic review and meta-analysis. Meta Gene. 2016;9:197–209.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Sun X, Wanying Yu, Ma W, Huang L, Yang G. Impact of the CYP4F2 gene polymorphisms on the warfarin maintenance dose: a systematic review and meta-analysis. Biomed Rep. 2016;4(4):498–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Saupe J, Shearer MJ, Kohlmeier M. Phylloquinone transport and its influence on gamma-carboxyglutamate residues of osteocalcin in patients on maintenance hemodialysis. Am J Clin Nutr. 1993;58(2):204–8.

    Article  CAS  PubMed  Google Scholar 

  69. Chappell DA, Medh JD. Receptor-mediated mechanisms of lipoprotein remnant catabolism. Prog Lipid Res. 1998;37(6):393–422.

    Article  CAS  PubMed  Google Scholar 

  70. Laith NAE, Ayah YA, Adan HA, Hatem AA, Nasr NA, Rame HK, et al. Influence of CYP4F2, ApoE, and CYP2A6 gene polymorphisms on the variability of Warfarin dosage requirements and susceptibility to cardiovascular disease in Jordan. Int J Med Sci. 2021;18(3):826.

    Article  Google Scholar 

  71. Jiang N, Yinghui Xu, Xia J, Jiang B, Li Y. Impact of GGCX polymorphisms on warfarin dose requirements in atrial fibrillation patients. Turk J Med Sci. 2017;47(4):1239–46.

    Article  CAS  PubMed  Google Scholar 

  72. Tang X-Y, Zhang J, Peng J, Tan S-L, Zhang W, Song G-B, et al. The association between GGCX, miR-133 genetic polymorphisms and warfarin stable dosage in Han Chinese patients with mechanical heart valve replacement. J Clin Pharm Ther. 2017;42(4):438–45.

    Article  CAS  PubMed  Google Scholar 

  73. Qiang Gu, Kong Y, Schneede J, Xiao Y, Chen L, Zhong Q, et al. Eur J Clin Pharmacol. 2010;66(12):1217–27.

    Article  Google Scholar 

  74. Guenthner TM, Cai D, Wallin R. Co-purification of microsomal epoxide hydrolase with the warfarin-sensitive vitamin K1 oxide reductase of the vitamin K cycle. Biochem Pharmacol. 1998;55(2):169–75.

    Article  CAS  PubMed  Google Scholar 

  75. Hammed A, Matagrin B, Spohn G, Prouillac C, Benoit E, Lattard V. VKORC1L1, an enzyme rescuing the vitamin K 2,3-epoxide reductase activity in some extrahepatic tissues during anticoagulation therapy. J Biol Chem. 2013;288(40):28733–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wadelius M, Sörlin K, Wallerman O, Karlsson J, Yue Q-Y, Magnusson PKE, et al. Warfarin sensitivity related to CYP2C9, CYP3A5, ABCB1 (MDR1) and other factors. Pharmacogenomics J. 2004;4(1):40–8.

    Article  CAS  PubMed  Google Scholar 

  77. de Oliveira Almeida VC, de Souza Ferreira AC, Ribeiro DD, Gomes Borges KB, Salles Moura Fernandes AP, Brunialti AL. Association of the C3435T polymorphism of the MDR1 gene and therapeutic doses of warfarin in thrombophilic patients. J Thromb Haemost. 2011;9(10):2120–2.

    Article  PubMed  Google Scholar 

  78. Zhang W, Zhang W, Zhu J, Kong F, Li Y, Wang H, et al. Pharmacogenomics. 2012;13(3):309–21.

    Article  CAS  PubMed  Google Scholar 

  79. Michael Lee MT, Chen C, Chou C, Lu L, Chuang H, Chen Y, et al. Genetic determinants of warfarin dosing in the Han-Chinese population. Pharmacogenomics. 2009;10(12):1905–13.

    Article  Google Scholar 

  80. Jee-Eun C, Byung CC, Kyung EL, Joo HK, Hye SG. Effects of NAD(P)H quinone oxidoreductase 1 polymorphisms on stable warfarin doses in Korean patients with mechanical cardiac valves. Eur J Clin Pharmacol. 2015;71(10):1229–36.

    Article  Google Scholar 

  81. Nihal ER, Leiliane RM, Karla C, Letícia CT, Heidi S, Marianna RB, et al. Clin Transl Sci. 2021;14(1):268–76.

    Article  Google Scholar 

  82. Kathryn MM, Nancy LS, Marlos AV, Edith AN, Cathy MH, Larisa HC. Factors influencing warfarin dose requirements in African–Americans. Pharmacogenomics. 2007;8(11):1535–44.

    Article  Google Scholar 

  83. Wallin R, Hutson SM, Cain D, Sweatt A, Sane DC. A molecular mechanism for genetic warfarin resistance in the rat. FASEB J. 2001;15(13):2542–4.

    Article  CAS  PubMed  Google Scholar 

  84. Nadeem W, David CS, Susan MH, Reidar W. The inhibitory effect of calumenin on the vitamin K-dependent gamma-carboxylation system. Characterization of the system in normal and warfarin-resistant rats. J Biol Chem. 2004;279(24):25276–83.

    Article  Google Scholar 

  85. Voora D, Koboldt DC, King CR, Lenzini PA, Eby CS, Porche-Sorbet R, et al. A polymorphism in the VKORC1 regulator calumenin predicts higher warfarin dose requirements in African Americans. Clin Pharmacol Ther. 2010;87(4):445–51.

    Article  CAS  PubMed  Google Scholar 

  86. Andrea HR, Yaping S, Jonathan SS, Jessica TD, Hua X, Matthew TO, et al. Predicting warfarin dosage in European–Americans and African–Americans using DNA samples linked to an electronic health record. Pharmacogenomics. 2012;13(4):407–18.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengfei Jin.

Ethics declarations

Funding

This work was financially supported by China National Key R&D Program (no. 2020YFC2008305).

Conflicts of interest

Zinan Zhao, Fei Zhao, Xiang Wang, Deping Liu, Junpeng Liu, Yatong Zhang, Xin Hu, Ming Zhao, Tian Chao, Shujie Dong, and Pengfei Jin declared no potential conflicts of interests/competing interests that might be relevant to the contents of this manuscript.

Ethics approval

This study exclusively uses data from published research; institutional ethical approval is not required.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Data availability statements

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

Code availability

Not applicable.

Author contribution

Pengfei Jin and Zinan Zhao conceptualized the research. Xiang Wang, Shujie Dong, and Chao Tian conducted statistical analysis. Deping Liu, Yatong Zhang, and Xin Hu contributed to data interpretation. Junpeng Liu, Fei Zhao, and Ming Zhao contributed to study searching. Zinan Zhao wrote the manuscript draft. All authors contributed to the draft revision and approved the final draft of the manuscript.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1182 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Z., Zhao, F., Wang, X. et al. Genetic Factors Influencing Warfarin Dose in Han Chinese Population: A Systematic Review and Meta-Analysis of Cohort Studies. Clin Pharmacokinet 62, 819–833 (2023). https://doi.org/10.1007/s40262-023-01258-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-023-01258-y

Navigation