Skip to main content
Log in

Effects of NAD(P)H quinone oxidoreductase 1 polymorphisms on stable warfarin doses in Korean patients with mechanical cardiac valves

  • Pharmacogenetics
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

NAD(P)H dehydrogenase, encoded by NAD(P)H quinone oxidoreductase 1 (NQO1), is an enzyme that catalyzes the reduction of quinones, including vitamin K. Given its potential role in vitamin K metabolism, this study aimed to investigate the effects of NQO1 polymorphisms on stable warfarin doses.

Methods

We tested a possible effect of gene polymorphisms on variability in warfarin response using 206 Korean patients with mechanical cardiac valves. Single nucleotide polymorphisms (SNPs) of NQO1 with a minor allele frequency of at least 15 % were included. Also, genotypes of vitamin K epoxide reductase complex subunit 1 (VKORC1), cytochrome P450 (CYP) 2C9, CYP4F2, gamma-glutamyl carboxylase (GGCX), and GATA4 were determined.

Results

NQO1 rs1800566 (C>T) and rs10517 (C>T) were significantly associated with stable warfarin doses. Variant homozygote carriers required lower stable warfarin doses than those with wild-type C allele in rs1800566 (4.85 ± 1.61 vs. 5.61 ± 1.94 mg; p = 0.033), whereas patients with wild homozygote required lower doses than those with T allele in rs10517 (5.11 ± 1.73 vs. 5.75 ± 1.98 mg; p = 0.017). Similar results were obtained from stratified analysis using VKORC1 variant homozygote carriers in both SNPs. Multivariate analysis showed that rs10517 (C>T) increased contribution of gene variations to the overall warfarin dose variability from 42.5 to 43.8 %.

Conclusion

Our results demonstrate that NQO1 gene polymorphisms influence stable warfarin doses in Korean patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Tie JK, Jin DY, Straight DL, Stafford DW (2011) Functional study of the vitamin K cycle in mammalian cells. Blood 117(10):2967–2974. doi:10.1182/blood-2010-08-304303

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Gong X, Gutala R, Jaiswal AK (2008) Quinone oxidoreductases and vitamin K metabolism. Vitam Horm 78:85–101. doi:10.1016/S0083-6729(07)00005-2

    Article  CAS  PubMed  Google Scholar 

  3. Kimmel SE, French B, Kasner SE, Johnson JA, Anderson JL, Gage BF, Rosenberg YD, Eby CS, Madigan RA, McBane RB, Abdel-Rahman SZ, Stevens SM, Yale S, Mohler 3rd ER, Fang MC, Shah V, Horenstein RB, Limdi NA, Muldowney 3rd JA, Gujral J, Delafontaine P, Desnick RJ, Ortel TL, Billett HH, Pendleton RC, Geller NL, Halperin JL, Goldhaber SZ, Caldwell MD, Califf RM, Ellenberg JH, Investigators C (2013) A pharmacogenetic versus a clinical algorithm for warfarin dosing. N Engl J Med 369(24):2283–2293. doi:10.1056/NEJMoa1310669

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Pirmohamed M, Burnside G, Eriksson N, Jorgensen AL, Toh CH, Nicholson T, Kesteven P, Christersson C, Wahlstrom B, Stafberg C, Zhang JE, Leathart JB, Kohnke H, Maitland-van der Zee AH, Williamson PR, Daly AK, Avery P, Kamali F, Wadelius M, Group E-P (2013) A randomized trial of genotype-guided dosing of warfarin. N Engl J Med 369(24):2294–2303. doi:10.1056/NEJMoa1311386

    Article  CAS  PubMed  Google Scholar 

  5. Johnson JA, Cavallari LH (2015) Warfarin pharmacogenetics. Trends Cardiovasc Med 25(1):33–41. doi:10.1016/j.tcm.2014.09.001

    Article  CAS  PubMed  Google Scholar 

  6. Lee KE, Chang BC, Kim HO, Yoon IK, Lee NR, Park HY, Gwak HS (2012) Effects of CYP4F2 gene polymorphisms on warfarin clearance and sensitivity in Korean patients with mechanical cardiac valves. Ther Drug Monit 34(3):275–282. doi:10.1097/FTD.0b013e318256a77c

    Article  CAS  PubMed  Google Scholar 

  7. Sun Y, Wu Z, Li S, Qin X, Li T, Xie L, Deng Y, Chen J (2015) Impact of gamma-glutamyl carboxylase gene polymorphisms on warfarin dose requirement: a systematic review and meta-analysis. Thromb Res 135(4):739–747. doi:10.1016/j.thromres.2015.01.029

    Article  CAS  PubMed  Google Scholar 

  8. Kamali X, Wulasihan M, Yang YC, Lu WH, Liu ZQ, He PY (2013) Association of GGCX gene polymorphism with warfarin dose in atrial fibrillation population in Xinjiang. Lipids Health Dis 12:149. doi:10.1186/1476-511X-12-149

    Article  PubMed Central  PubMed  Google Scholar 

  9. Jeong E, Lee KE, Jeong H, Chang BC, Gwak HS (2015) Impact of GATA4 variants on stable warfarin doses in patients with prosthetic heart valves. Pharmacogenomics J 15(1):33–37. doi:10.1038/tpj.2014.36

    Article  CAS  PubMed  Google Scholar 

  10. Wallin R, Martin LF (1987) Warfarin poisoning and vitamin K antagonism in rat and human liver. Design of a system in vitro that mimics the situation in vivo. Biochem J 241(2):389–396

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Wallin R (1989) Vitamin K-dependent carboxylation in the developing rat: evidence for a similar mechanism of action of warfarin in fetal and adult livers. Pediatr Res 26(4):370–376. doi:10.1203/00006450-198910000-00017

    Article  CAS  PubMed  Google Scholar 

  12. Wallin R, Martin LF (1985) Vitamin K-dependent carboxylation and vitamin K metabolism in liver. Effects of warfarin. J Clin Invest 76(5):1879–1884. doi:10.1172/JCI112182

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Ross D, Siegel D (2004) NAD(P)H:quinone oxidoreductase 1 (NQO1, DT-diaphorase), functions and pharmacogenetics. Methods Enzymol 382:115–144. doi:10.1016/S0076-6879(04)82008-1

    Article  CAS  PubMed  Google Scholar 

  14. Ernster L, Lind C, Rase B (1972) A study of the DT-diaphorase activity of warfarin-resistant rats. Eur J Biochem FEBS 25(1):198–206

    Article  CAS  Google Scholar 

  15. Shyu HY, Fong CS, Fu YP, Shieh JC, Yin JH, Chang CY, Wang HW, Cheng CW (2010) Genotype polymorphisms of GGCX, NQO1, and VKORC1 genes associated with risk susceptibility in patients with large-artery atherosclerotic stroke. Clin Chim Acta Int J Clin Chem 411(11–12):840–845. doi:10.1016/j.cca.2010.02.071

    Article  CAS  Google Scholar 

  16. Kelsey KT, Ross D, Traver RD, Christiani DC, Zuo ZF, Spitz MR, Wang M, Xu X, Lee BK, Schwartz BS, Wiencke JK (1997) Ethnic variation in the prevalence of a common NAD(P)H quinone oxidoreductase polymorphism and its implications for anti-cancer chemotherapy. Br J Cancer 76(7):852–854

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B, Higgins J, DeFelice M, Lochner A, Faggart M, Liu-Cordero SN, Rotimi C, Adeyemo A, Cooper R, Ward R, Lander ES, Daly MJ, Altshuler D (2002) The structure of haplotype blocks in the human genome. Science 296(5576):2225–2229. doi:10.1126/science.1069424

    Article  CAS  PubMed  Google Scholar 

  18. Whitlock RP, Sun JC, Fremes SE, Rubens FD, Teoh KH, American College of Chest P (2012) Antithrombotic and thrombolytic therapy for valvular disease: antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest 141(2 Suppl):e576S–e600S. doi:10.1378/chest.11-2305

    PubMed Central  CAS  PubMed  Google Scholar 

  19. Matsuyama K, Matsumoto M, Sugita T, Nishizawa J, Yoshida K, Tokuda Y, Matsuo T (2002) Anticoagulant therapy in Japanese patients with mechanical mitral valves. Circ J Off J Jpn Circ Soc 66(7):668–670

    CAS  Google Scholar 

  20. Valinezhad Orang A, Safaralizadeh R, Kazemzadeh-Bavili M (2014) Mechanisms of miRNA-mediated gene regulation from common downregulation to mRNA-specific upregulation. Int J Genomics 2014:970607. doi:10.1155/2014/970607

    Article  PubMed Central  PubMed  Google Scholar 

  21. Bress A, Patel SR, Perera MA, Campbell RT, Kittles RA, Cavallari LH (2012) Effect of NQO1 and CYP4F2 genotypes on warfarin dose requirements in Hispanic-Americans and African-Americans. Pharmacogenomics 13(16):1925–1935. doi:10.2217/pgs.12.164

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Sconce EA, Khan TI, Wynne HA, Avery P, Monkhouse L, King BP, Wood P, Kesteven P, Daly AK, Kamali F (2005) The impact of CYP2C9 and VKORC1 genetic polymorphism and patient characteristics upon warfarin dose requirements: proposal for a new dosing regimen. Blood 106(7):2329–2333. doi:10.1182/blood-2005-03-1108

    Article  CAS  PubMed  Google Scholar 

  23. Caldwell MD, Awad T, Johnson JA, Gage BF, Falkowski M, Gardina P, Hubbard J, Turpaz Y, Langaee TY, Eby C, King CR, Brower A, Schmelzer JR, Glurich I, Vidaillet HJ, Yale SH, Qi Zhang K, Berg RL, Burmester JK (2008) CYP4F2 genetic variant alters required warfarin dose. Blood 111(8):4106–4112. doi:10.1182/blood-2007-11-122010

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Jorgensen AL, FitzGerald RJ, Oyee J, Pirmohamed M, Williamson PR (2012) Influence of CYP2C9 and VKORC1 on patient response to warfarin: a systematic review and meta-analysis. PLoS One 7(8):e44064. doi:10.1371/journal.pone.0044064

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Zhong SL, Yu XY, Liu Y, Xu D, Mai LP, Tan HH, Lin QX, Yang M, Lin SG (2012) Integrating interacting drugs and genetic variations to improve the predictability of warfarin maintenance dose in Chinese patients. Pharmacogenet Genomics 22(3):176–182. doi:10.1097/FPC.0b013e32834f45f9

    Article  CAS  PubMed  Google Scholar 

  26. Jin DY, Tie JK, Stafford DW (2007) The conversion of vitamin K epoxide to vitamin K quinone and vitamin K quinone to vitamin K hydroquinone uses the same active site cysteines. Biochemistry 46(24):7279–7283. doi:10.1021/bi700527j

    Article  CAS  PubMed  Google Scholar 

Download references

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interests.

Ethical approval

All procedures performed in this study involving participants were in accordance with the ethical standards of the institutional committee and with the 1964 Helsinki Declaration and its later amendments (IRB No. 2009-4-0283).

Informed consent

Informed consent was obtained from all individual participants included in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hye Sun Gwak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chung, JE., Chang, B.C., Lee, K.E. et al. Effects of NAD(P)H quinone oxidoreductase 1 polymorphisms on stable warfarin doses in Korean patients with mechanical cardiac valves. Eur J Clin Pharmacol 71, 1229–1236 (2015). https://doi.org/10.1007/s00228-015-1915-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-015-1915-y

Keywords

Navigation