Skip to main content
Log in

Clinical Pharmacokinetics and Pharmacodynamics of Transarterial Chemoembolization and Targeted Therapies in Hepatocellular Carcinoma

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

The management of hepatocellular carcinoma (HCC) is based on a multidisciplinary decision tree. Treatment includes loco-regional therapy, mainly transarterial chemoembolization, for intermediate-stage HCC and systemic therapy with oral tyrosine kinase inhibitors (TKIs) for advanced HCC. Transarterial chemoembolization involves hepatic intra-arterial infusion with either conventional procedure or drug-eluting-beads. The aim of the loco-regional procedure is to deliver treatment as close as possible to the tumor both to embolize the tumor area and to enhance efficacy and minimize systemic toxicity of the anticancer drug. Pharmacokinetic studies applied to transarterial chemoembolization are rare and pharmacodynamic studies even rarer. However, all available studies lead to the same conclusions: use of the transarterial route lowers systemic exposure to the cytotoxic drug and leads to much higher tumor drug concentrations than does a similar dose via the intravenous route. However, reproducibility of the procedure remains a major problem, and no consensus exists regarding the choice of anticancer drug and its dosage. Systemic therapy with TKIs is based on sorafenib and lenvatinib as first-line treatment and regorafenib and cabozantinib as second-line treatment. Clinical use of TKIs is challenging because of their complex pharmacokinetics, with high liver metabolism yielding both active metabolites and their common toxicities. Changes in liver function over time with the progression of HCC adds further complexity to the use of TKIs. The challenges posed by TKIs and the HCC disease process means monitoring of TKIs is required to improve clinical management. To date, only partial data supporting sorafenib monitoring is available. Results from further pharmacokinetic/pharmacodynamic studies of these four TKIs are eagerly awaited and are expected to permit such monitoring and the development of consensus guidelines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359–86.

    Article  CAS  PubMed  Google Scholar 

  2. Sartorius K, Sartorius B, Aldous C, Govender PS, Madiba TE. Global and country underestimation of hepatocellular carcinoma (HCC) in 2012 and its implications. Cancer Epidemiol. 2015;39(3):284–90.

    Article  CAS  PubMed  Google Scholar 

  3. European Association for the Study of the Liver, European Organisation for Research and Treatment of Cancer. EASL-EORTC clinical practice guidelines: management of hepatocellular carcinoma. Eur J Cancer. 2012;48(5):599–641.

    Article  Google Scholar 

  4. Marelli L, Stigliano R, Triantos C, Senzolo M, Cholongitas E, Davies N, et al. Transarterial therapy for hepatocellular carcinoma: which technique is more effective? A systematic review of cohort and randomized studies. Cardiovasc Interv Radiol. 2007;30(1):6–25.

    Article  Google Scholar 

  5. Lammer J, Malagari K, Vogl T, Pilleul F, Denys A, Watkinson A, et al. Prospective randomized study of doxorubicin-eluting-bead embolization in the treatment of hepatocellular carcinoma: results of the PRECISION V study. Cardiovasc Interv Radiol. 2010;33(1):41–52.

    Article  Google Scholar 

  6. Facciorusso A. Drug-eluting beads transarterial chemoembolization for hepatocellular carcinoma: Current state of the art. World J Gastroenterol. 2018;24(2):161–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wu B, Zhou J, Ling G, Zhu D, Long Q. CalliSpheres drug-eluting beads versus lipiodol transarterial chemoembolization in the treatment of hepatocellular carcinoma: a short-term efficacy and safety study. World J Surg Oncol. 2018;16(1):69.

    Article  PubMed  PubMed Central  Google Scholar 

  8. European Association for the Study of the Liver. EASL clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol. 2018;69:182–236.

    Article  Google Scholar 

  9. Lencioni R, Llovet JM, Han G, Tak WY, Yang J, Guglielmi A, et al. Sorafenib or placebo plus TACE with doxorubicin-eluting beads for intermediate stage HCC: the SPACE trial. J Hepatol. 2016;64(5):1090–8.

    Article  CAS  PubMed  Google Scholar 

  10. Kudo M, Arizumi T. Transarterial chemoembolization in combination with a molecular targeted agent: lessons learned from negative trials (Post-TACE, BRISK-TA, SPACE, ORIENTAL, and TACE-2). Oncology. 2017;93(Suppl 1):127–34.

    Article  PubMed  Google Scholar 

  11. Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, et al.; SHARP Investigators Study Group. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359(4):378–90.

    Article  CAS  PubMed  Google Scholar 

  12. Llovet JM, Hernandez-Gea V. Hepatocellular carcinoma: reasons for phase III failure and novel perspectives on trial design. Clin Cancer Res. 2014;20(8):2072–9.

    Article  CAS  PubMed  Google Scholar 

  13. Bouattour M, Rousseau B, Wassermann J, Payancé A, Huillard O. Negative trials for foreseeable safety reasons in advanced hepatocellular carcinoma: how long are we going to take lightly pharmacokinetics of tyrosine kinase inhibitors? J Clin Oncol. 2015;33(22):2484–5.

    Article  PubMed  Google Scholar 

  14. Faivre SJ, Bouattour M, Dreyer C, Raymond E. Sunitinib in hepatocellular carcinoma: redefining appropriate dosing, schedule, and activity end points. J Clin Oncol. 2009;27(35):e248–50.

    Article  CAS  PubMed  Google Scholar 

  15. Kudo M, Finn RS, Qin S, Han K-H, Ikeda K, Piscaglia F, et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial. Lancet. 2018;391(10126):1163–73.

    Article  CAS  PubMed  Google Scholar 

  16. Bruix J, Qin S, Merle P, Granito A, Huang Y-H, Bodoky G, et al. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2017;389(10064):56–66.

    Article  CAS  PubMed  Google Scholar 

  17. Abou-Alfa GK, Meyer T, Cheng AL, El-Khoueiry AB, Rimassa L, Ryoo BY, et al. Cabozantinib in patients with advanced and progressing hepatocellular carcinoma. N Engl J Med. 2018;379(1):54–63.

    Article  CAS  PubMed  Google Scholar 

  18. Brown DB, Nikolic B, Covey AM, Nutting CW, Saad WEA, Salem R, et al. Quality improvement guidelines for transhepatic arterial chemoembolization, embolization, and chemotherapeutic infusion for hepatic malignancy. J Vasc Interv Radiol JVIR. 2012;23(3):287–94.

    Article  PubMed  Google Scholar 

  19. Idée J-M, Guiu B. Use of Lipiodol as a drug-delivery system for transcatheter arterial chemoembolization of hepatocellular carcinoma: a review. Crit Rev Oncol Hematol. 2013;88(3):530–49.

    Article  PubMed  Google Scholar 

  20. Konno T, Maeda H, Iwai K, Tashiro S, Maki S, Morinaga T, et al. Effect of arterial administration of high-molecular-weight anticancer agent SMANCS with lipid lymphographic agent on hepatoma: a preliminary report. Eur J Cancer Clin Oncol. 1983;19(8):1053–65.

    Article  CAS  PubMed  Google Scholar 

  21. Konno T. Targeting cancer chemotherapeutic agents by use of lipiodol contrast medium. Cancer. 1990;66(9):1897–903.

    Article  CAS  PubMed  Google Scholar 

  22. Maeda H. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul. 2001;41:189–207.

    Article  CAS  PubMed  Google Scholar 

  23. Weintraub JL, Salem R. Treatment of hepatocellular carcinoma combining sorafenib and transarterial locoregional therapy: state of the science. J Vasc Interv Radiol JVIR. 2013;24(8):1123–34.

    Article  PubMed  Google Scholar 

  24. Lewis AL, Dreher MR. locoregional drug delivery using image-guided intra-arterial drug eluting bead therapy. J Controlled Release. 2012;161(2):338–50.

    Article  CAS  Google Scholar 

  25. Nam HC, Jang B, Song MJ. Transarterial chemoembolization with drug-eluting beads in hepatocellular carcinoma. World J Gastroenterol. 2016;22(40):8853–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Masada T, Tanaka T, Nishiofuku H, Fukuoka Y, Sato T, Tatsumoto S, et al. Techniques to form a suitable lipiodol-epirubicin emulsion by using 3-way stopcock methods in transarterial chemoembolization for liver tumor. J Vasc Interv Radiol JVIR. 2017;28(10):1461–6.

    Article  PubMed  Google Scholar 

  27. Guiu B, Colin C, Cercueil J-P, Loffroy R, Guiu S, Ferrant E, et al. Pilot study of transarterial chemoembolization with pirarubicin and amiodarone for unresectable hepatocellular carcinoma. Am J Clin Oncol. 2009;32(3):238–44.

    Article  CAS  PubMed  Google Scholar 

  28. Sessa C, Valota O, Geroni C. Ongoing phase I and II studies of novel anthracyclines. Cardiovasc Toxicol. 2007;7(2):75–9.

    Article  CAS  PubMed  Google Scholar 

  29. Favelier S, Boulin M, Hamza S, Cercueil J-P, Cherblanc V, Lepage C, et al. Lipiodol trans-arterial chemoembolization of hepatocellular carcinoma with idarubicin: first experience. Cardiovasc Interv Radiol. 2013;36(4):1039–46.

    Article  Google Scholar 

  30. Ikeda K, Saitoh S, Suzuki Y, Tsubota A, Koida I, Kobayashi M, et al. Effect of arterial administration of a high molecular weight anti-tumor agent, styrene maleic acid neocarzinostatin, for multiple small liver cancer—a pilot study. J Gastroenterol. 1997;32(4):513–20.

    Article  CAS  PubMed  Google Scholar 

  31. Okabe K, Beppu T, Haraoka K, Oh-Uchida Y, Yamamura S, Tomiyasu S, et al. Safety and short-term therapeutic effects of miriplatin-lipiodol suspension in transarterial chemoembolization (TACE) for hepatocellular carcinoma. Anticancer Res. 2011;31(9):2983–8.

    CAS  PubMed  Google Scholar 

  32. Yamashita F, Tanaka M, Andou E, Yutani S, Kato O, Tanikawa K. Carboplatin as an anticancer agent for transcatheter arterial chemoembolization in patients with hepatocellular carcinoma. Oncology. 1997;54(1):28–33.

    Article  CAS  PubMed  Google Scholar 

  33. Wang N, Lv Y-Z, Xu A-H, Huang Y-R, Peng L, Li J-R. Application of lobaplatin in trans-catheter arterial chemoembolization for primary hepatic carcinoma. Asian Pac J Cancer Prev. 2014;15(2):647–50.

    Article  PubMed  Google Scholar 

  34. Liapi E, Geschwind J-FH. Intra-arterial therapies for hepatocellular carcinoma: where do we stand? Ann Surg Oncol. 2010;17(5):1234–46.

    Article  PubMed  Google Scholar 

  35. Shi M, Lu L-G, Fang W-Q, Guo R-P, Chen M-S, Li Y, et al. Roles played by chemolipiodolization and embolization in chemoembolization for hepatocellular carcinoma: single-blind, randomized trial. J Natl Cancer Inst. 2013;105(1):59–68.

    Article  CAS  PubMed  Google Scholar 

  36. Brown DB, Nikolic B, Covey AM, Nutting CW, Saad WE, Salem R, et al. Quality improvement guidelines for transhepatic arterial chemoembolization, embolization, and chemotherapeutic infusion for hepatic malignancy. J Vasc Interv Radiol. 2012;23(3):287–94.

    Article  PubMed  Google Scholar 

  37. Gaba RC, Lokken RP, Hickey RM, Lipnik AJ, Lewandowski RJ, Salem R, et al. Quality improvement guidelines for transarterial chemoembolization and embolization of hepatic malignancy. J Vasc Interv Radiol. 2017;28(9):1210–23.

    Article  PubMed  Google Scholar 

  38. White JA, Gray SH, Li P, Simpson HN, McGuire BM, Eckhoff DE, et al. Current guidelines for chemoembolization for hepatocellular carcinoma: Room for improvement? Hepatol Commun. 2017;1(4):338–46.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Basile A, Carrafiello G, Ierardi AM, Tsetis D, Brountzos E. Quality-improvement guidelines for hepatic transarterial chemoembolization. Cardiovasc Interv Radiol. 2012;35(4):765–74.

    Article  Google Scholar 

  40. Hyun MH, Lee YS, Kim JH, Lee CU, Jung YK, Seo YS, et al. Hepatic resection compared to chemoembolization in intermediate- to advanced-stage hepatocellular carcinoma: a meta-analysis of high-quality studies. Hepatology. 2018;68(3):977–93.

    Article  CAS  PubMed  Google Scholar 

  41. Zhao M, Xiang P, Jiang H. TransArterial ChemoEmbolization (TACE) with platinum versus anthracyclines for hepatocellular carcinoma: a meta-analysis. Int J Surg. 2018;53:151–8.

    Article  PubMed  Google Scholar 

  42. Chang JM, Tzeng WS, Pan HB, Yang CF, Lai KH. Transcatheter arterial embolization with or without cisplatin treatment of hepatocellular carcinoma. A randomized controlled study. Cancer. 1994;74:2449–53.

    Article  CAS  PubMed  Google Scholar 

  43. Namur J, Wassef M, Millot J-M, Lewis AL, Manfait M, Laurent A. Drug-eluting beads for liver embolization: concentration of doxorubicin in tissue and in beads in a pig model. J Vasc Interv Radiol JVIR. 2010;21(2):259–67.

    Article  PubMed  Google Scholar 

  44. Gupta S, Wright KC, Ensor J, Van Pelt CS, Dixon KA, Kundra V. Hepatic arterial embolization with doxorubicin-loaded superabsorbent polymer microspheres in an animal model. Cardiovasc Interv Radiol. 2011;34(5):1021–30.

    Article  Google Scholar 

  45. Choi JW, Cho H-J, Park J-H, Baek SY, Chung JW, Kim D-D, et al. Comparison of drug release and pharmacokinetics after transarterial chemoembolization using diverse lipiodol emulsions and drug-eluting beads. PLoS One. 2014;9(12):e115898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang S, Huang C, Li Z, Yang Y, Bao T, Chen H, et al. Comparison of pharmacokinetics and drug release in tissues after transarterial chemoembolization with doxorubicin using diverse lipiodol emulsions and CalliSpheres Beads in rabbit livers. Drug Deliv. 2017;24(1):1011–7.

    Article  CAS  PubMed  Google Scholar 

  47. Hong K, Kobeiter H, Georgiades CS, Torbenson MS, Geschwind J-FH. Effects of the type of embolization particles on carboplatin concentration in liver tumors after transcatheter arterial chemoembolization in a rabbit model of liver cancer. J Vasc Interv Radiol JVIR. 2005;16(12):1711–7.

    Article  PubMed  Google Scholar 

  48. Chatziioannou AN, Siskos AP, Loxas D, Kavatzas N, Agrogiannis G, Fokas D, et al. Transarterial embolization with sorafenib in animal livers: a pharmacokinetics study. J Vasc Interv Radiol JVIR. 2013;24(11):1657.e1–1663.e1.

    Article  Google Scholar 

  49. Parvinian A, Casadaban LC, Hauck ZZ, van Breemen RB, Gaba RC. Pharmacokinetic study of conventional sorafenib chemoembolization in a rabbit VX2 liver tumor model. Diagn Interv Radiol. 2015;21(3):235–40.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kim GM, Kim MD, Kim DY, Kim SH, Won JY, Park SI, et al. Transarterial chemoembolization using sorafenib in a rabbit VX2 liver tumor model: pharmacokinetics and antitumor effect. J Vasc Interv Radiol JVIR. 2016;27(7):1086–92.

    Article  PubMed  Google Scholar 

  51. Cusack BJ, Young SP, Driskell J, Olson RD. Doxorubicin and doxorubicinol pharmacokinetics and tissue concentrations following bolus injection and continuous infusion of doxorubicin in the rabbit. Cancer Chemother Pharmacol. 1993;32(1):53–8.

    Article  CAS  PubMed  Google Scholar 

  52. Duffull SB, Robinson BA. Clinical pharmacokinetics and dose optimisation of carboplatin. Clin Pharmacokinet. 1997;33(3):161–83.

    Article  CAS  PubMed  Google Scholar 

  53. Oguri S, Sakakibara T, Mase H, Shimizu T, Ishikawa K, Kimura K, et al. Clinical pharmacokinetics of carboplatin. J Clin Pharmacol. 1988;28(3):208–15.

    Article  CAS  PubMed  Google Scholar 

  54. Gaver RC, George AM, Duncan GF, Morris AD, Deeb G, Faulkner HC, et al. The disposition of carboplatin in the beagle dog. Cancer Chemother Pharmacol. 1988;21(3):197–202.

    Article  CAS  PubMed  Google Scholar 

  55. Fukudo M, Ito T, Mizuno T, Shinsako K, Hatano E, Uemoto S, et al. Exposure-toxicity relationship of sorafenib in Japanese patients with renal cell carcinoma and hepatocellular carcinoma. Clin Pharmacokinet. 2014;53(2):185–96.

    Article  CAS  PubMed  Google Scholar 

  56. Boulin M, Schmitt A, Delhom E, Cercueil J-P, Wendremaire M, Imbs D-C, et al. Improved stability of lipiodol–drug emulsion for transarterial chemoembolisation of hepatocellular carcinoma results in improved pharmacokinetic profile: proof of concept using idarubicin. Eur Radiol. 2016;26(2):601–9.

    Article  PubMed  Google Scholar 

  57. Guiu B, Schmitt A, Reinhardt S, Fohlen A, Pohl T, Wendremaire M, et al. Idarubicin-loaded ONCOZENE drug-eluting embolic agents for chemoembolization of hepatocellular carcinoma: in vitro loading and release and in vivo pharmacokinetics. J Vasc Interv Radiol JVIR. 2015;26(2):262–70.

    Article  PubMed  Google Scholar 

  58. Boulin M, Hillon P, Cercueil JP, Bonnetain F, Dabakuyo S, Minello A, et al. Idarubicin-loaded beads for chemoembolisation of hepatocellular carcinoma: results of the IDASPHERE phase I trial. Aliment Pharmacol Ther. 2014;39(11):1301–13.

    Article  CAS  PubMed  Google Scholar 

  59. Sottani C, Poggi G, Quaretti P, Regazzi M, Montagna B, Quaquarini E, et al. Serum pharmacokinetics in patients treated with transarterial chemoembolization (TACE) using two types of epirubicin-loaded microspheres. Anticancer Res. 2012;32(5):1769–74.

    CAS  PubMed  Google Scholar 

  60. Varela M, Real MI, Burrel M, Forner A, Sala M, Brunet M, et al. Chemoembolization of hepatocellular carcinoma with drug eluting beads: efficacy and doxorubicin pharmacokinetics. J Hepatol. 2007;46(3):474–81.

    Article  CAS  PubMed  Google Scholar 

  61. Malagari K, Kiakidis T, Pomoni M, Moschouris H, Emmanouil E, Spiridopoulos T, et al. Pharmacokinetics, safety, and efficacy of chemoembolization with doxorubicin-loaded tightly calibrated small microspheres in patients with hepatocellular carcinoma. Cardiovasc Interv Radiol. 2016;39(10):1379–91.

    Article  Google Scholar 

  62. Fukushima T, Yamashita T, Goto N, Ueda T, Okabe KI, Kuraishi Y, et al. A pharmacokinetic study of idarubicin in Japanese patients with malignant lymphoma: relationship with leukocytopenia and neutropenia. Int J Hematol. 2001;74(3):297–302.

    Article  CAS  PubMed  Google Scholar 

  63. Robert J. Clinical pharmacokinetics of epirubicin. Clin Pharmacokinet. 1994;16(6):428–38.

    Article  Google Scholar 

  64. Geschwind JF, Artemov D, Abraham S, Omdal D, Huncharek MS, McGee C, et al. Chemoembolization of liver tumor in a rabbit model: assessment of tumor cell death with diffusion-weighted MR imaging and histologic analysis. J Vasc Interv Radiol. 2000;11(10):1245–55.

    Article  CAS  PubMed  Google Scholar 

  65. Virmani S, Harris KR, Szolc-Kowalska B, Paunesku T, Woloschak GE, Lee FT, et al. Comparison of two different methods for inoculating VX2 tumors in rabbit livers and hind limbs. J Vasc Interv Radiol. 2008;19(6):931–6.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Ramirez LH, Juliéron M, Bonnay M, Koscielny S, Zhao Z, Gouyette A, Munck JN. Stimulation of tumor growth in vitro and in vivo by suramin on the VX2 model. Invest New Drugs. 1995;13(1):51–3.

    Article  CAS  PubMed  Google Scholar 

  67. Kuszyk BS, Boitnott JK, Choti MA, Bluemke DA, Sheth S, Magee CA, et al. Local tumor recurrence following hepatic cryoablation: radiologic-histopathologic correlation in a rabbit model. Radiology. 2000;217(2):477–86.

    Article  CAS  PubMed  Google Scholar 

  68. Arora KK, Pedersen PL. Functional significance of mitochondrial bound hexokinase in tumor cell metabolism. Evidence for preferential phosphorylation of glucose by intramitochondrially generated ATP. J Biol Chem. 1988;263:17422–8.

    CAS  PubMed  Google Scholar 

  69. Au JL, Jang SH, Zheng J, Chen CT, Song S, Hu L, et al. Determinants of drug delivery and transport to solid tumors. J Controlled Release Off J Controlled Release Soc. 2001;74(1–3):31–46.

    Article  CAS  Google Scholar 

  70. Namur J, Citron SJ, Sellers MT, Dupuis MH, Wassef M, Manfait M, et al. Embolization of hepatocellular carcinoma with drug-eluting beads: doxorubicin tissue concentration and distribution in patient liver explants. J Hepatol. 2011;55(6):1332–8.

    Article  CAS  PubMed  Google Scholar 

  71. Gaba RC, Emmadi R, Parvinian A, Casadaban LC. Correlation of doxorubicin delivery and tumor necrosis after drug-eluting bead transarterial chemoembolization of rabbit VX2 liver tumors. Radiology. 2016;280(3):752–61.

    Article  PubMed  Google Scholar 

  72. Le Bot MA, Bégué JM, Kernaleguen D, Robert J, Ratanasavanh D, Airiau J, et al. Different cytotoxicity and metabolism of doxorubicin, daunorubicin, epirubicin, esorubicin and idarubicin in cultured human and rat hepatocytes. Biochem Pharmacol. 1988;37(20):3877–87.

    Article  PubMed  Google Scholar 

  73. Luo D, Cheng SC, Xie H, Xie Y. Effects of Bcl-2 and Bcl-XL protein levels on chemoresistance of hepatoblastoma HepG2 cell line. Biochem Cell Biol Biochim Biol Cell. 2000;78(2):119–26.

    Article  CAS  Google Scholar 

  74. Chuu J-J, Liu JM, Tsou M-H, Huang C-L, Chen C-P, Wang H-S, et al. Effects of paclitaxel and doxorubicin in histocultures of hepatocelular carcinomas. J Biomed Sci. 2007;14(2):233–44.

    Article  CAS  PubMed  Google Scholar 

  75. Gao J, Qian F, Szymanski-Exner A, Stowe N, Haaga J. In vivo drug distribution dynamics in thermoablated and normal rabbit livers from biodegradable polymers. J Biomed Mater Res. 2002;62(2):308–14.

    Article  CAS  PubMed  Google Scholar 

  76. Blanco E, Qian F, Weinberg B, Stowe N, Anderson JM, Gao J. Effect of fibrous capsule formation on doxorubicin distribution in radiofrequency ablated rat livers. J Biomed Mater Res A. 2004;69A(3):398–406.

    Article  CAS  Google Scholar 

  77. Verret V, Namur J, Ghegediban SH, Wassef M, Moine L, Bonneau M, et al. Toxicity of doxorubicin on pig liver after chemoembolization with doxorubicin-loaded microspheres: a pilot DNA-microarrays and histology study. Cardiovasc Interv Radiol. 2013;36(1):204–12.

    Article  Google Scholar 

  78. Wang B, Xu H, Gao ZQ, Ning HF, Sun YQ, Cao GW. Increased expression of vascular endothelial growth factor in hepatocellular carcinoma after transcatheter arterial chemoembolization. Acta Radiol. 2008;49(5):523–9.

    Article  CAS  PubMed  Google Scholar 

  79. Xu W, Kwon J-H, Moon YH, Kim YB, Yu YS, Lee N, et al. Influence of preoperative transcatheter arterial chemoembolization on gene expression in the HIF-1α pathway in patients with hepatocellular carcinoma. J Cancer Res Clin Oncol. 2014;140(9):1507–15.

    Article  CAS  PubMed  Google Scholar 

  80. Llovet JM, Real MI, Montaña X, Planas R, Coll S, Aponte J, et al. Arterial embolisation or chemoembolisation versus symptomatic treatment in patients with unresectable hepatocellular carcinoma: a randomised controlled trial. Lancet. 2002;359(9319):1734–9.

    Article  PubMed  Google Scholar 

  81. Park C, Choi SI, Kim H, Yoo HS, Lee YB. Distribution of lipiodol in hepatocellular carcinoma. Liver. 1990;10(2):72–8.

    Article  CAS  PubMed  Google Scholar 

  82. Bhattacharya S, Dhillon AP, Winslet MC, Davidson BR, Shukla N, Gupta SD, et al. Human liver cancer cells and endothelial cells incorporate iodised oil. Br J Cancer. 1996;73(7):877–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kan Z. Dynamic study of iodized oil in the liver and blood supply to hepatic tumors. An experimental investigation in several animal species. Acta Radiol Suppl. 1996;408:1–25.

    CAS  PubMed  Google Scholar 

  84. de Baere T, Dufaux J, Roche A, Counnord JL, Berthault MF, Denys A, et al. Circulatory alterations induced by intra-arterial injection of iodized oil and emulsions of iodized oil and doxorubicin: experimental study. Radiology. 1995;194(1):165–70.

    Article  CAS  PubMed  Google Scholar 

  85. Cay O, Kruskal J, Thomas P, Clouse ME. Targeting of different ethiodized oil-doxorubicin mixtures to hypovascular hepatic metastases with intraarterial and intraportal injections. J Vasc Interv Radiol JVIR. 1996;7(3):409–17.

    Article  CAS  PubMed  Google Scholar 

  86. Becker S, Lepareur N, Cadeillan V, Ardisson V, Bayat S, Noiret N, et al. Optimization of hepatocarcinoma uptake with radiolabeled lipiodol: development of new lipiodol formulations with increased viscosity. Cancer Biother Radiopharm. 2011;27(2):149–55.

    Article  CAS  PubMed  Google Scholar 

  87. Liang B, Xiong F, Wu H, Wang Y, Dong X, Cheng S, et al. Effect of transcatheter intraarterial therapies on the distribution of doxorubicin in liver cancer in a rabbit model. PLoS One. 2013;8(10):e76388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Tzeng W-S, Wu R-H, Chang S-C, Chou C-K, Lin C-Y, Chen J-J, et al. Ionic versus nonionic contrast media solvents used with an epirubicin-based agent for transarterial chemoembolization of hepatocellular carcinoma. J Vasc Interv Radiol JVIR. 2008;19(3):342–50.

    Article  PubMed  Google Scholar 

  89. Minchinton AI, Tannock IF. Drug penetration in solid tumours. Nat Rev Cancer. 2006;6(8):583–92.

    Article  CAS  PubMed  Google Scholar 

  90. Strumberg D, Richly H, Hilger RA, Schleucher N, Korfee S, Tewes M, et al. Phase I clinical and pharmacokinetic study of the Novel Raf kinase and vascular endothelial growth factor receptor inhibitor BAY 43-9006 in patients with advanced refractory solid tumors. J Clin Oncol Off J Am Soc Clin Oncol. 2005;23(5):965–72.

    Article  CAS  Google Scholar 

  91. https://www.ema.europa.eu/en/documents/product-information/nexavar-epar-product-information_fr.pdf. Accessed 17 Apr 2019.

  92. Abou-Alfa GK, Amadori D, Santoro A, Figer A, De Greve J, Lathia C, et al. Safety and efficacy of sorafenib in patients with hepatocellular carcinoma (HCC) and Child–Pugh A versus B cirrhosis. Gastrointest Cancer Res. 2011;4(2):40–4.

    PubMed  PubMed Central  Google Scholar 

  93. Di Gion P, Kanefendt F, Lindauer A, Scheffler M, Doroshyenko O, Fuhr U, et al. Clinical pharmacokinetics of tyrosine kinase inhibitors: focus on pyrimidines, pyridines and pyrroles. Clin Pharmacokinet. 2011;50(9):551–603.

    Article  PubMed  Google Scholar 

  94. Hu S, Chen Z, Franke R, Orwick S, Zhao M, Rudek MA, et al. Interaction of the multikinase inhibitors sorafenib and sunitinib with solute carriers and ATP-binding cassette transporters. Clin Cancer Res Off J Am Assoc Cancer Res. 2009;15(19):6062–9.

    Article  CAS  Google Scholar 

  95. Gnoth MJ, Sandmann S, Engel K, Radtke M. In vitro to in vivo comparison of the substrate characteristics of sorafenib tosylate toward P-glycoprotein. Drug Metab Dispos Biol Fate Chem. 2010;38(8):1341–6.

    Article  CAS  PubMed  Google Scholar 

  96. Boudou-Rouquette P, Ropert S, Mir O, Coriat R, Billemont B, Tod M, et al. Variability of sorafenib toxicity and exposure over time: a pharmacokinetic/pharmacodynamic analysis. Oncologist. 2012;17(9):1204–12.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Abou-Alfa GK, Schwartz L, Ricci S, Amadori D, Santoro A, Figer A, et al. Phase II study of sorafenib in patients with advanced hepatocellular carcinoma. J Clin Oncol. 2006;24(26):4293–300.

    Article  CAS  PubMed  Google Scholar 

  98. Furuse J, Ishii H, Nakachi K, Suzuki E, Shimizu S, Nakajima K. Phase I study of sorafenib in Japanese patients with hepatocellular carcinoma. Cancer Sci. 2008;99(1):159–65.

    CAS  PubMed  Google Scholar 

  99. Kane RC, Farrell AT, Saber H, Tang S, Williams G, Jee JM, et al. Sorafenib for the treatment of advanced renal cell carcinoma. Clin Cancer Res. 2006;12(24):7271–8.

    Article  CAS  PubMed  Google Scholar 

  100. Villarroel MC, Pratz KW, Xu L, Wright JJ, Smith BD, Rudek MA. Plasma protein binding of sorafenib, a multi kinase inhibitor: in vitro and in cancer patients. Investig New Drugs. 2012;30(6):2096–102.

    Article  CAS  Google Scholar 

  101. Brózik A, Hegedüs C, Erdei Z, Hegedus T, Özvegy-Laczka C, Szakács G, et al. Tyrosine kinase inhibitors as modulators of ATP binding cassette multidrug transporters: substrates, chemosensitizers or inducers of acquired multidrug resistance? Expert Opin Drug Metab Toxicol. 2011;7(5):623–42.

    Article  CAS  PubMed  Google Scholar 

  102. Zimmerman EI, Hu S, Roberts JL, Gibson AA, Orwick SJ, Li L, et al. Contribution of OATP1B1 and OATP1B3 to the disposition of sorafenib and sorafenib-glucuronide. Clin Cancer Res. 2013;19(6):1458–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Yi P, Higa A, Taouji S, Bexiga MG, Marza E, Arma D, et al. Sorafenib-mediated targeting of the AAA+ ATPase p97/VCP leads to disruption of the secretory pathway, endoplasmic reticulum stress, and hepatocellular cancer cell death. Mol Cancer Ther. 2012;11(12):2610–20.

    Article  CAS  PubMed  Google Scholar 

  104. Iusuf D, van de Steeg E, Schinkel AH. Hepatocyte hopping of OATP1B substrates contributes to efficient hepatic detoxification. Clin Pharmacol Ther. 2012;92(5):559–62.

    Article  CAS  PubMed  Google Scholar 

  105. Iusuf D, van de Steeg E, Schinkel AH. Functions of OATP1A and 1B transporters in vivo: insights from mouse models. Trends Pharmacol Sci. 2012;33(2):100–8.

    Article  CAS  PubMed  Google Scholar 

  106. Swift B, Nebot N, Lee JK, Han T, Proctor WR, Thakker DR, et al. Sorafenib hepatobiliary disposition: mechanisms of hepatic uptake and disposition of generated metabolites. Drug Metab Dispos Biol Fate Chem. 2013;41(6):1179–86.

    Article  CAS  PubMed  Google Scholar 

  107. Gillani TB, Rawling T, Murray M. Cytochrome P450-mediated biotransformation of sorafenib and its N-oxide metabolite: implications for cell viability and human toxicity. Chem Res Toxicol. 2015;28(1):92–102.

    Article  CAS  PubMed  Google Scholar 

  108. Minami H, Kawada K, Ebi H, Kitagawa K, Kim Y, Araki K, et al. Phase I and pharmacokinetic study of sorafenib, an oral multikinase inhibitor, in Japanese patients with advanced refractory solid tumors. Cancer Sci. 2008;99(7):1492–8.

    Article  CAS  PubMed  Google Scholar 

  109. Lathia C, Lettieri J, Cihon F, Gallentine M, Radtke M, Sundaresan P. Lack of effect of ketoconazole-mediated CYP3A inhibition on sorafenib clinical pharmacokinetics. Cancer Chemother Pharmacol. 2006;57(5):685–92.

    Article  CAS  PubMed  Google Scholar 

  110. Meza-Junco J, Chu QS-C, Christensen O, Rajagopalan P, Das S, Stefanyschyn R, et al. UGT1A1 polymorphism and hyperbilirubinemia in a patient who received sorafenib. Cancer Chemother Pharmacol. 2009;65(1):1–4.

    Article  PubMed  Google Scholar 

  111. Arrondeau J, Mir O, Boudou-Rouquette P, Coriat R, Ropert S, Dumas G, et al. Sorafenib exposure decreases over time in patients with hepatocellular carcinoma. Invesig New Drugs. 2012;30(5):2046–9.

    Article  CAS  Google Scholar 

  112. Tlemsani C, Huillard O, Arrondeau J, Boudou-Rouquette P, Cessot A, Blanchet B, et al. Effect of glucuronidation on transport and tissue accumulation of tyrosine kinase inhibitors: consequences for the clinical management of sorafenib and regorafenib. Expert Opin Drug Metab Toxicol. 2015;11(5):785–94.

    Article  CAS  PubMed  Google Scholar 

  113. Vasilyeva A, Durmus S, Li L, Wagenaar E, Hu S, Gibson AA, et al. Hepatocellular shuttling and recirculation of sorafenib-glucuronide is dependent on Abcc2, Abcc3, and Oatp1a/1b. Cancer Res. 2015;75(13):2729–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Edginton AN, Zimmerman EI, Vasilyeva A, Baker SD, Panetta JC. Sorafenib metabolism, transport, and enterohepatic recycling: physiologically based modeling and simulation in mice. Cancer Chemother Pharmacol. 2016;77(5):1039–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. van de Steeg E, Stránecký V, Hartmannová H, Nosková L, Hřebíček M, Wagenaar E, et al. Complete OATP1B1 and OATP1B3 deficiency causes human Rotor syndrome by interrupting conjugated bilirubin reuptake into the liver. J Clin Investig. 2012;122(2):519–28.

    Article  CAS  PubMed  Google Scholar 

  116. Miners JO, Chau N, Rowland A, Burns K, McKinnon RA, Mackenzie PI, et al. Inhibition of human UDP-glucuronosyltransferase enzymes by lapatinib, pazopanib, regorafenib and sorafenib: implications for hyperbilirubinemia. Biochem Pharmacol. 2017;129:85–95.

    Article  CAS  PubMed  Google Scholar 

  117. Bins S, van Doorn L, Phelps MA, Gibson AA, Hu S, Li L, et al. Influence of OATP1B1 function on the disposition of sorafenib-β-d-glucuronide. Clin Transl Sci. 2017;10(4):271–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Shimada M, Okawa H, Kondo Y, Maejima T, Kataoka Y, Hisamichi K, et al. Monitoring serum levels of sorafenib and its N-oxide is essential for long-term sorafenib treatment of patients with hepatocellular carcinoma. Tohoku J Exp Med. 2015;237(3):173–82.

    Article  CAS  PubMed  Google Scholar 

  119. Jain L, Woo S, Gardner ER, Dahut WL, Kohn EC, Kummar S, et al. Population pharmacokinetic analysis of sorafenib in patients with solid tumours. Br J Clin Pharmacol. 2011;72(2):294–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Gupta A, Jarzab B, Capdevila J, Shumaker R, Hussein Z. Population pharmacokinetic analysis of lenvatinib in healthy subjects and patients with cancer. Br J Clin Pharmacol. 2016;81(6):1124–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Boss DS, Glen H, Beijnen JH, Keesen M, Morrison R, Tait B, et al. A phase I study of E7080, a multitargeted tyrosine kinase inhibitor, in patients with advanced solid tumours. Br J Cancer. 2012;106(10):1598–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Ikeda M, Okusaka T, Mitsunaga S, Ueno H, Tamai T, Suzuki T, et al. Safety and pharmacokinetics of lenvatinib in patients with advanced hepatocellular carcinoma. Clin Cancer Res. 2016;22(6):1385–94.

    Article  CAS  PubMed  Google Scholar 

  123. Ikeda K, Kudo M, Kawazoe S, Osaki Y, Ikeda M, Okusaka T, et al. Phase 2 study of lenvatinib in patients with advanced hepatocellular carcinoma. J Gastroenterol. 2017;52(4):512–9.

    Article  CAS  PubMed  Google Scholar 

  124. Yamada K, Yamamoto N, Yamada Y, Nokihara H, Fujiwara Y, Hirata T, et al. Phase I dose-escalation study and biomarker analysis of E7080 in patients with advanced solid tumors. Clin Cancer Res. 2011;17(8):2528–37.

    Article  CAS  PubMed  Google Scholar 

  125. Hong DS, Kurzrock R, Falchook GS, Andresen C, Kwak J, Ren M, et al. Phase 1b study of lenvatinib (E7080) in combination with temozolomide for treatment of advanced melanoma. Oncotarget. 2015;6(40):43127–34.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Oikonomopoulos G, Aravind P, Sarker D. Lenvatinib: a potential breakthrough in advanced hepatocellular carcinoma? Future Oncol. 2016;12(4):465–76.

    Article  CAS  PubMed  Google Scholar 

  127. Mano Y, Kusano K. A validated LC–MS/MS method of total and unbound lenvatinib quantification in human serum for protein binding studies by equilibrium dialysis. J Pharm Biomed Anal. 2015;114:82–7.

    Article  CAS  PubMed  Google Scholar 

  128. Frampton JE. Lenvatinib: a review in refractory thyroid cancer. Target Oncol. 2016;11(1):115–22.

    Article  PubMed  Google Scholar 

  129. https://ec.europa.eu/health/documents/community-register/2017/20170921138815/anx_138815_fr.pdf. Accessed 17 Apr 2019.

  130. Koide H, Tsujimoto M, Takeuchi A, Tanaka M, Ikegami Y, Tagami M, et al. Substrate-dependent effects of molecular-targeted anticancer agents on activity of organic anion transporting polypeptide 1B1. Xenobiotica. 2017;10:1–13.

    Google Scholar 

  131. Dubbelman AC, Rosing H, Thijssen B, Gebretensae A, Lucas L, Chen H, et al. Development and validation of LC–MS/MS assays for the quantification of E7080 and metabolites in various human biological matrices. J Chromatogr B. 2012;887–888:25–34.

    Article  CAS  Google Scholar 

  132. Dubbelman A-C, Nijenhuis CM, Jansen RS, Rosing H, Mizuo H, Kawaguchi S, et al. Metabolite profiling of the multiple tyrosine kinase inhibitor lenvatinib: a cross-species comparison. Investig New Drugs. 2016;34(3):300–18.

    Article  CAS  Google Scholar 

  133. Inoue K, Asai N, Mizuo H, Fukuda K, Kusano K, Yoshimura T. Unique metabolic pathway of [14C]lenvatinib after oral administration to male cynomolgus monkey. Drug Metab Dispos. 2012;40(4):662–70.

    Article  CAS  PubMed  Google Scholar 

  134. https://www.ema.europa.eu/en/documents/product-information/stivarga-epar-product-information_fr.pdf. Accessed 17 Apr 2019.

  135. Jones RL, Bendell JC, Smith DC, Diefenbach K, Lettieri J, Boix O, et al. A phase I open-label trial evaluating the cardiovascular safety of regorafenib in patients with advanced cancer. Cancer Chemother Pharmacol. 2015;76(4):777–84.

    Article  CAS  PubMed  Google Scholar 

  136. Bruix J, Tak W-Y, Gasbarrini A, Santoro A, Colombo M, Lim H-Y, et al. Regorafenib as second-line therapy for intermediate or advanced hepatocellular carcinoma: multicentre, open-label, phase II safety study. Eur J Cancer Oxf Engl. 2013;49(16):3412–9.

    Article  CAS  Google Scholar 

  137. Sunakawa Y, Furuse J, Okusaka T, Ikeda M, Nagashima F, Ueno H, et al. Regorafenib in Japanese patients with solid tumors: phase I study of safety, efficacy, and pharmacokinetics. Investig New Drugs. 2014;32(1):104–12.

    Article  CAS  Google Scholar 

  138. Zopf D, Fichtner I, Bhargava A, Steinke W, Thierauch K-H, Diefenbach K, et al. Pharmacologic activity and pharmacokinetics of metabolites of regorafenib in preclinical models. Cancer Med. 2016;5(11):3176–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Kort A, Durmus S, Sparidans RW, Wagenaar E, Beijnen JH, Schinkel AH. Brain and testis accumulation of regorafenib is restricted by breast cancer resistance protein (BCRP/ABCG2) and P-glycoprotein (P-GP/ABCB1). Pharm Res. 2015;32(7):2205–16.

    Article  CAS  PubMed  Google Scholar 

  140. Fujita K-I, Masuo Y, Yamazaki E, Shibutani T, Kubota Y, Nakamichi N, et al. Involvement of the transporters P-glycoprotein and breast cancer resistance protein in dermal distribution of the multikinase inhibitor regorafenib and its active metabolites. J Pharm Sci. 2017;106(9):2632–41.

    Article  CAS  PubMed  Google Scholar 

  141. Mross K, Frost A, Steinbild S, Hedbom S, Büchert M, Fasol U, et al. A phase I dose-escalation study of regorafenib (BAY 73-4506), an inhibitor of oncogenic, angiogenic, and stromal kinases, in patients with advanced solid tumors. Clin Cancer Res Off J Am Assoc Cancer Res. 2012;18(9):2658–67.

    Article  CAS  Google Scholar 

  142. Strumberg D, Scheulen ME, Schultheis B, Richly H, Frost A, Büchert M, et al. Regorafenib (BAY 73-4506) in advanced colorectal cancer: a phase I study. Br J Cancer. 2012;106(11):1722–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Yoshino T, Komatsu Y, Yamada Y, Yamazaki K, Tsuji A, Ura T, et al. Randomized phase III trial of regorafenib in metastatic colorectal cancer: analysis of the CORRECT Japanese and non-Japanese subpopulations. Investig New Drugs. 2015;33(3):740–50.

    Article  CAS  Google Scholar 

  144. Ravi S, Singal AK. Regorafenib: an evidence-based review of its potential in patients with advanced liver cancer. Core Evid. 2014;9:81–7.

    PubMed  PubMed Central  Google Scholar 

  145. Ohya H, Shibayama Y, Ogura J, Narumi K, Kobayashi M, Iseki K. Regorafenib is transported by the organic anion transporter 1B1 and the multidrug resistance protein 2. Biol Pharm Bull. 2015;38(4):582–6.

    Article  CAS  PubMed  Google Scholar 

  146. Hotta K, Ueyama J, Tatsumi Y, Tsukiyama I, Sugiura Y, Saito H, et al. Lack of contribution of multidrug resistance-associated protein and organic anion-transporting polypeptide to pharmacokinetics of regorafenib, a novel multi-kinase inhibitor, in rats. Anticancer Res. 2015;35(9):4681–9.

    CAS  PubMed  Google Scholar 

  147. Gerisch M, Hafner F-T, Lang D, Radtke M, Diefenbach K, Cleton A, et al. Mass balance, metabolic disposition, and pharmacokinetics of a single oral dose of regorafenib in healthy human subjects. Cancer Chemother Pharmacol. 2018;81(1):195–206.

    Article  CAS  PubMed  Google Scholar 

  148. Lacy SA, Miles DR, Nguyen LT. Clinical pharmacokinetics and pharmacodynamics of cabozantinib. Clin Pharmacokinet. 2017;56:477–91.

    Article  PubMed  Google Scholar 

  149. Nguyen L, Holland J, Mamelok R, Laberge MK, Grenier J, Swearingen D, et al. Evaluation of the effect of food and gastric pH on the single-dose pharmacokinetics of cabozantinib in healthy adult subjects. J Clin Pharmacolo. 2015;55(11):1293–302.

    Article  CAS  Google Scholar 

  150. https://www.ema.europa.eu/en/documents/product-information/cabometyx-epar-product-information_en.pdf. Accessed 17 Apr 2019.

  151. Kelley RK, Verslype C, Cohn AL, Yang TS, Su WC, Burris H, et al. Cabozantinib in hepatocellular carcinoma: results of a phase 2 placebo-controlled randomized discontinuation study. Ann Oncol. 2017;28:528–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Nguyen L, Holland J, Ramies D, Mamelok R, Benrimoh N, Ciric S, et al. Effect of renal and hepatic impairment on the pharmacokinetics of cabozantinib. J Clin Pharmacol. 2016;56(9):1130–40.

    Article  CAS  PubMed  Google Scholar 

  153. Qin C, Cao Q, Li P, Wang S, Wang J, Wang M, et al. The influence of genetic variants of sorafenib on clinical outcomes and toxic effects in patients with advanced renal cell carcinoma. Sci Rep. 2016;6:20089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Lee JH, Chung Y-H, Kim JA, Shim JH, Lee D, Lee HC, et al. Genetic predisposition of hand-foot skin reaction after sorafenib therapy in patients with hepatocellular carcinoma. Cancer. 2013;119(1):136–42.

    Article  CAS  PubMed  Google Scholar 

  155. Lagas JS, van Waterschoot RAB, Sparidans RW, Wagenaar E, Beijnen JH, Schinkel AH. Breast cancer resistance protein and P-glycoprotein limit sorafenib brain accumulation. Mol Cancer Ther. 2010;9(2):319–26.

    Article  CAS  PubMed  Google Scholar 

  156. Kane RC, Farrell AT, Madabushi R, Booth B, Chattopadhyay S, Sridhara R, et al. Sorafenib for the treatment of unresectable hepatocellular carcinoma. Oncologist. 2009;14(1):95–100.

    Article  CAS  PubMed  Google Scholar 

  157. Tandia M, Mhiri A, Paule B, Saffroy R, Cailliez V, Noé G, et al. Correlation between clinical response to sorafenib in hepatocellular carcinoma treatment and polymorphisms of P-glycoprotein (ABCB1) and of breast cancer resistance protein (ABCG2): monocentric study. Cancer Chemother Pharmacol. 2017;79(4):759–66.

    Article  CAS  PubMed  Google Scholar 

  158. Bins S, Lenting A, El Bouazzaoui S, van Doorn L, Oomen-de Hoop E, Eskens FA, et al. Polymorphisms in SLCO1B1 and UGT1A1 are associated with sorafenib-induced toxicity. Pharmacogenomics. 2016;17(14):1483–90.

    Article  CAS  PubMed  Google Scholar 

  159. Peer CJ, Sissung TM, Kim A, Jain L, Woo S, Gardner ER, et al. Sorafenib is an inhibitor of UGT1A1 but is metabolized by UGT1A9: implications of genetic variants on pharmacokinetics and hyperbilirubinemia. Clin Cancer Res Off J Am Assoc Cancer Res. 2012;18(7):2099–107.

    Article  CAS  Google Scholar 

  160. Boudou-Rouquette P, Narjoz C, Golmard JL, Thomas-Schoemann A, Mir O, Taieb F, et al. Early sorafenib-induced toxicity is associated with drug exposure and UGTIA9 genetic polymorphism in patients with solid tumors: a preliminary study. PLoS One. 2012;7(8):e42875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Lin S-M, Lu S-N, Chen P-T, Jeng L-B, Chen S-C, Hu C-T, et al. HATT: a phase IV, single-arm, open-label study of sorafenib in Taiwanese patients with advanced hepatocellular carcinoma. Hepatol Int. 2017;11(2):199–208.

    Article  PubMed  Google Scholar 

  162. Tamai T, Hayato S, Hojo S, Suzuki T, Okusaka T, Ikeda K, et al. Dose finding of lenvatinib in subjects with advanced hepatocellular carcinoma based on population pharmacokinetic and exposure–response analyses. J Clin Pharmacol. 2017;57(9):1138–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Trnkova ZJ, Grothey A, Sobrero A, Siena S, Falcone A, Ychou M, et al. PD-0034 population pharmacokinetics analysis of regorafenib and its active metabolites from the phase III CORRECT study of metastatic colorectal cancer. Ann Oncol. 2013;24(suppl_4):iv37.

    Google Scholar 

  164. Miles D, Jumbe NL, Lacy S, Nguyen L. Population pharmacokinetic model of cabozantinib in patients with medullary thyroid carcinoma and its application to an exposure-response analysis. Clin Pharmacokinet. 2016;55(1):93–105.

    Article  CAS  PubMed  Google Scholar 

  165. Lacy S, Yang B, Miles D, Nguyen L, Hutmacher M. A population pharmacokinetic model of cabozantinib in healthy volunteers and patients with various cancer types. Cancer Chemother Pharmacol. 2018;81:1071–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Hénin E, Blanchet B, Boudou-Rouquette P, Thomas-Schoemann A, Freyer G, Vidal M, et al. Fractionation of daily dose increases the predicted risk of severe sorafenib-induced hand-foot syndrome (HFS). Cancer Chemother Pharmacol. 2014;73(2):287–97.

    Article  CAS  PubMed  Google Scholar 

  167. Rolny C, Nilsson I, Magnusson P, Armulik A, Jakobsson L, Wentzel P, et al. Platelet-derived growth factor receptor-beta promotes early endothelial cell differentiation. Blood. 2006;108(6):1877–86.

    Article  CAS  PubMed  Google Scholar 

  168. Maki RG, D’Adamo DR, Keohan ML, Saulle M, Schuetze SM, Undevia SD, et al. Phase II study of sorafenib in patients with metastatic or recurrent sarcomas. J Clin Oncol. 2009;27(19):3133–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Miller AA, Murry DJ, Owzar K, Hollis DR, Kennedy EB, Abou-Alfa G, et al. Phase I and pharmacokinetic study of sorafenib in patients with hepatic or renal dysfunction: CALGB 60301. J Clin Oncol Off J Am Soc Clin Oncol. 2009;27(11):1800–5.

    Article  CAS  Google Scholar 

  170. Shumaker R, Aluri J, Fan J, Martinez G, Pentikis H, Ren M. Influence of hepatic impairment on lenvatinib pharmacokinetics following single-dose oral administration. J Clin Pharmacol. 2015;55(3):317–27.

    Article  CAS  PubMed  Google Scholar 

  171. https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/203085lbl.pdf. Accessed 17 Apr 2019.

  172. Nguyen L, Holland J, Miles DR, Engel C, Benrimoh N, Oreilly T, et al. Pharmacokinetic (PK) drug interaction studies of cabozantinib: effect of CYP3A inducer rifampin and inhibitor ketoconazole on cabozantinib plasma PK and effect of cabozantinib on CYP2C8 probe substrate rosiglitazone plasma PK. J Clin Pharmacol. 2015;55(9):1012–23.

    Article  CAS  PubMed  Google Scholar 

  173. Kennoki T, Kondo T, Kimata N, Murakami J, Ishimori I, Nakazawa H, et al. Clinical results and pharmacokinetics of sorafenib in chronic hemodialysis patients with metastatic renal cell carcinoma in a single center. Jpn J Clin Oncol. 2011;41(5):647–55.

    Article  PubMed  Google Scholar 

  174. Ishii T, Hatano E, Taura K, Mizuno T, Kawai T, Fukudo M, et al. Sorafenib in a hepatocellular carcinoma patient with end-stage renal failure: a pharmacokinetic study. Hepatol Res. 2014;44(6):685–8.

    Article  CAS  PubMed  Google Scholar 

  175. Motzer RJ, Hutson TE, Glen H, Michaelson MD, Molina A, Eisen T, et al. Lenvatinib, everolimus, and the combination in patients with metastatic renal cell carcinoma: a randomised, phase 2, open-label, multicentre trial. Lancet Oncol. 2015;16(15):1473–82.

    Article  CAS  PubMed  Google Scholar 

  176. Nakamichi S, Nokihara H, Yamamoto N, Yamada Y, Honda K, Tamura Y, et al. A phase 1 study of lenvatinib, multiple receptor tyrosine kinase inhibitor, in Japanese patients with advanced solid tumors. Cancer Chemother Pharmacol. 2015;76(6):1153–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Edeline J, Crouzet L, Le Sourd S, Larible C, Brunot A, Le Roy F, et al. Sorafenib use in elderly patients with hepatocellular carcinoma: caution about use of platelet aggregation inhibitors. Cancer Chemother Pharmacol. 2015;75(1):215–9.

    Article  CAS  PubMed  Google Scholar 

  178. Kelley RK, Nimeiri HS, Munster PN, Vergo MT, Huang Y, Li C-M, et al. Temsirolimus combined with sorafenib in hepatocellular carcinoma: a phase I dose-finding trial with pharmacokinetic and biomarker correlates. Ann Oncol Off J Eur Soc Med Oncol. 2013;24(7):1900–7.

    Article  CAS  Google Scholar 

  179. Lee SJ, Lee J, Park SH, Park JO, Park YS, Kang WK, et al. Phase 1 trial of S-1 in combination with sorafenib for patients with advanced hepatocellular carcinoma. Investig New Drugs. 2012;30(4):1540–7.

    Article  CAS  Google Scholar 

  180. Ooka Y, Chiba T, Ogasawara S, Arai K, Suzuki E, Tawada A, et al. A phase I/II study of S-1 with sorafenib in patients with advanced hepatocellular carcinoma. Investig New Drugs. 2014;32(4):723–8.

    Article  CAS  Google Scholar 

  181. Zhai J-M, Yin X-Y, Lai Y-R, Hou X, Cai J-P, Hao X-Y, et al. Sorafenib enhances the chemotherapeutic efficacy of S-1 against hepatocellular carcinoma through downregulation of transcription factor E2F-1. Cancer Chemother Pharmacol. 2013;71(5):1255–64.

    Article  CAS  PubMed  Google Scholar 

  182. El-Madani M, Colomban O, Tod M, Maillet D, Peron J, Rodriguez-Lafrasse C, et al. EVESOR, a model-based, multiparameter, Phase I trial to optimize the benefit/toxicity ratio of everolimus and sorafenib. Future Oncol Lond Engl. 2017;13(8):679–93.

    Article  CAS  Google Scholar 

  183. Adjei AA, Richards DA, El-Khoueiry A, Braiteh F, Becerra CHR, Stephenson JJ, et al. A phase I study of the safety, pharmacokinetics, and pharmacodynamics of combination therapy with refametinib plus sorafenib in patients with advanced cancer. Clin Cancer Res Off J Am Assoc Cancer Res. 2016;22(10):2368–76.

    Article  CAS  Google Scholar 

  184. Vaishampayan UN, Burger AM, Sausville EA, Heilbrun LK, Li J, Horiba MN, et al. Safety, efficacy, pharmacokinetics, and pharmacodynamics of the combination of sorafenib and tanespimycin. Clin Cancer Res Off J Am Assoc Cancer Res. 2010;16(14):3795–804.

    Article  CAS  Google Scholar 

  185. Gomo C, Coriat R, Faivre L, Mir O, Ropert S, Billemont B, et al. Pharmacokinetic interaction involving sorafenib and the calcium-channel blocker felodipine in a patient with hepatocellular carcinoma. Investig New Drugs. 2011;29(6):1511–4.

    Article  Google Scholar 

  186. Pawaskar DK, Straubinger RM, Fetterly GJ, Hylander BH, Repasky EA, Ma WW, et al. Physiologically based pharmacokinetic models for everolimus and sorafenib in mice. Cancer Chemother Pharmacol. 2013;71(5):1219–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Flaherty KT, Lathia C, Frye RF, Schuchter L, Redlinger M, Rosen M, et al. Interaction of sorafenib and cytochrome P450 isoenzymes in patients with advanced melanoma: a phase I/II pharmacokinetic interaction study. Cancer Chemother Pharmacol. 2011;68(5):1111–8.

    Article  CAS  PubMed  Google Scholar 

  188. Duran I, Hotté SJ, Hirte H, Chen EX, MacLean M, Turner S, et al. Phase I targeted combination trial of sorafenib and erlotinib in patients with advanced solid tumors. Clin Cancer Res. 2007;13(16):4849–57.

    Article  CAS  PubMed  Google Scholar 

  189. Quintela-Fandino M, Le Tourneau C, Duran I, Chen EX, Wang L, Tsao M, et al. Phase I combination of sorafenib and erlotinib therapy in solid tumors: safety, pharmacokinetic, and pharmacodynamic evaluation from an expansion cohort. Mol Cancer Ther. 2010;9(3):751–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Adjei AA, Molina JR, Mandrekar SJ, Marks R, Reid JR, Croghan G, et al. Phase I trial of sorafenib in combination with gefitinib in patients with refractory or recurrent non-small cell lung cancer. Clin Cancer Res Off J Am Assoc Cancer Res. 2007;13(9):2684–91.

    Article  CAS  Google Scholar 

  191. Flaherty KT, Schiller J, Schuchter LM, Liu G, Tuveson DA, Redlinger M, et al. A phase I trial of the oral, multikinase inhibitor sorafenib in combination with carboplatin and paclitaxel. Clin Cancer Res Off J Am Assoc Cancer Res. 2008;14(15):4836–42.

    Article  CAS  Google Scholar 

  192. Awada A, Hendlisz A, Christensen O, Lathia CD, Bartholomeus S, Lebrun F, et al. Phase I trial to investigate the safety, pharmacokinetics and efficacy of sorafenib combined with docetaxel in patients with advanced refractory solid tumours. Eur J Cancer Oxf Engl. 1990. 2012;48(4):465–74.

    CAS  Google Scholar 

  193. Mross K, Steinbild S, Baas F, Gmehling D, Radtke M, Voliotis D, et al. Results from an in vitro and a clinical/pharmacological phase I study with the combination irinotecan and sorafenib. Eur J Cancer Oxf Engl. 1990. 2007;43(1):55–63.

    CAS  Google Scholar 

  194. Richly H, Schultheis B, Adamietz IA, Kupsch P, Grubert M, Hilger RA, et al. Combination of sorafenib and doxorubicin in patients with advanced hepatocellular carcinoma: results from a phase I extension trial. Eur J Cancer Oxf Engl. 1990. 2009;45(4):579–87.

    CAS  Google Scholar 

  195. Brendel E, Ludwig M, Lathia C, Robert C, Ropert S, Soria J-C, et al. Pharmacokinetic results of a phase I trial of sorafenib in combination with dacarbazine in patients with advanced solid tumors. Cancer Chemother Pharmacol. 2011;68(1):53–61.

    Article  CAS  PubMed  Google Scholar 

  196. Escudier B, Lassau N, Angevin E, Soria JC, Chami L, Lamuraglia M, et al. Phase I trial of sorafenib in combination with IFN alpha-2a in patients with unresectable and/or metastatic renal cell carcinoma or malignant melanoma. Clin Cancer Res. 2007;13(6):1801–9.

    Article  CAS  PubMed  Google Scholar 

  197. Niwakawa M, Hashine K, Yamaguchi R, Fujii H, Hamamoto Y, Fukino K, et al. Phase I trial of sorafenib in combination with interferon-alpha in Japanese patients with unresectable or metastatic renal cell carcinoma. Investig New Drugs. 2012;30(3):1046–54.

    Article  CAS  Google Scholar 

  198. Kupsch P, Henning BF, Passarge K, Richly H, Wiesemann K, Hilger RA, et al. Results of a phase I trial of sorafenib (BAY 43-9006) in combination with oxaliplatin in patients with refractory solid tumors, including colorectal cancer. Clin Colorectal Cancer. 2005;5(3):188–96.

    Article  PubMed  Google Scholar 

  199. Siu LL, Awada A, Takimoto CH, Piccart M, Schwartz B, Giannaris T, et al. Phase I trial of sorafenib and gemcitabine in advanced solid tumors with an expanded cohort in advanced pancreatic cancer. Clin Cancer Res Off J Am Assoc Cancer Res. 2006;12(1):144–51.

    Article  CAS  Google Scholar 

  200. Awada A, Gil T, Whenham N, Van Hamme J, Besse-Hammer T, Brendel E, et al. Safety and pharmacokinetics of sorafenib combined with capecitabine in patients with advanced solid tumors: results of a phase 1 trial. J Clin Pharmacol. 2011;51(12):1674–84.

    Article  CAS  PubMed  Google Scholar 

  201. Infante JR, Jones SF, Bendell JC, Greco FA, Yardley DA, Lane CM, et al. A drug interaction study evaluating the pharmacokinetics and toxicity of sorafenib in combination with capecitabine. Cancer Chemother Pharmacol. 2012;69(1):137–44.

    Article  CAS  PubMed  Google Scholar 

  202. Desar IME, Timmer-Bonte JNH, Burger DM, van der Graaf WTA, van Herpen CML. A phase I dose-escalation study to evaluate safety and tolerability of sorafenib combined with sirolimus in patients with advanced solid cancer. Br J Cancer. 2010;103(11):1637–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Abou-Alfa GK, Yen C-J, Hsu C-H, O’Donoghue J, Beylergil V, Ruan S, et al. Phase Ib study of codrituzumab in combination with sorafenib in patients with non-curable advanced hepatocellular carcinoma (HCC). Cancer Chemother Pharmacol. 2017;79(2):421–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Tai WM, Yong WP, Lim C, Low LS, Tham CK, Koh TS, et al. A phase Ib study of selumetinib (AZD6244, ARRY-142886) in combination with sorafenib in advanced hepatocellular carcinoma (HCC). Ann Oncol. 2016;27(12):2210–5.

    Article  CAS  PubMed  Google Scholar 

  205. Noda S, Shioya M, Hira D, Fujiyama Y, Morita S, Terada T. Pharmacokinetic interaction between sorafenib and prednisolone in a patient with hepatocellular carcinoma. Cancer Chemother Pharmacol. 2013;72(1):269–72.

    Article  CAS  PubMed  Google Scholar 

  206. Shumaker RC, Aluri J, Fan J, Martinez G, Thompson GA, Ren M. Effect of rifampicin on the pharmacokinetics of lenvatinib in healthy adults. Clin Drug Investig. 2014;34(9):651–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Shumaker R, Aluri J, Fan J, Martinez G, Thompson GA, Ren M. Effects of ketoconazole on the pharmacokinetics of lenvatinib (E7080) in healthy participants. Clin Pharmacol Drug Dev. 2015;4(2):155–60.

    Article  CAS  PubMed  Google Scholar 

  208. Schultheis B, Folprecht G, Kuhlmann J, Ehrenberg R, Hacker UT, Köhne CH, et al. Regorafenib in combination with FOLFOX or FOLFIRI as first- or second-line treatment of colorectal cancer: results of a multicenter, phase Ib study. Ann Oncol. 2013;24(6):1560–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Wang Y-J, Zhang Y-K, Zhang G-N, Al Rihani SB, Wei M-N, Gupta P, et al. Regorafenib overcomes chemotherapeutic multidrug resistance mediated by ABCB1 transporter in colorectal cancer: In vitro and in vivo study. Cancer Lett. 2017;28(396):145–54.

    Article  CAS  Google Scholar 

  210. Kim K, Jha R, Prins PA, Wang H, Chacha M, Hartley ML, et al. Regorafenib in advanced hepatocellular carcinoma (HCC): considerations for treatment. Cancer Chemother Pharmacol. 2017;80(5):945–54.

    Article  CAS  PubMed  Google Scholar 

  211. Tsuchiya K, Asahina Y, Matsuda S, Muraoka M, Nakata T, Suzuki Y, et al. Changes in plasma vascular endothelial growth factor at 8 weeks after sorafenib administration as predictors of survival for advanced hepatocellular carcinoma. Cancer. 2014;120(2):229–37.

    Article  CAS  PubMed  Google Scholar 

  212. Kuzuya T, Ishigami M, Ishizu Y, Honda T, Hayashi K, Katano Y, et al. Early clinical response after 2 weeks of sorafenib therapy predicts outcomes and anti-tumor response in patients with advanced hepatocellular carcinoma. PLoS One. 2015;10(9):e0138776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Johnson PJ, Berhane S, Kagebayashi C, Satomura S, Teng M, Reeves HL, et al. Assessment of liver function in patients with hepatocellular carcinoma: a new evidence-based approach-the ALBI grade. J Clin Oncol Off J Am Soc Clin Oncol. 2015;33(6):550–8.

    Article  Google Scholar 

  214. Yada M, Masumoto A, Motomura K, Tajiri H, Morita Y, Suzuki H, et al. Indicators of sorafenib efficacy in patients with advanced hepatocellular carcinoma. World J Gastroenterol. 2014;20(35):12581–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Cho J-Y, Paik Y-H, Lim HY, Kim YG, Lim HK, Min YW, et al. Clinical parameters predictive of outcomes in sorafenib-treated patients with advanced hepatocellular carcinoma. Liver Int Off J Int Assoc Study Liver. 2013;33(6):950–7.

    CAS  Google Scholar 

  216. Zhu AX, Kang Y-K, Rosmorduc O, Evans TRJ, Santoro A, Ross P, et al. Biomarker analyses of clinical outcomes in patients with advanced hepatocellular carcinoma treated with sorafenib with or without erlotinib in the SEARCH trial. Clin Cancer Res. 2016;22(19):4870–9.

    Article  CAS  PubMed  Google Scholar 

  217. Cao G, Li X, Qin C, Li J. Prognostic value of VEGF in hepatocellular carcinoma patients treated with sorafenib: a meta-analysis. Int Med J Exp Clin Res. 2015;21:3144–51.

    CAS  Google Scholar 

  218. Bouattour M, Payancé A, Wassermann J. Evaluation of antiangiogenic efficacy in advanced hepatocellular carcinoma: biomarkers and functional imaging. World J Hepatol. 2015;7(20):2245–63.

    Article  PubMed  PubMed Central  Google Scholar 

  219. Thomas-Schoemann A, Blanchet B, Boudou-Rouquette P, Golmard JL, Noé G, Chenevier-Gobeaux C, et al. Soluble VEGFR-1: a new biomarker of sorafenib-related hypertension (i.e., sorafenib-related is the compound adjective?). J Clin Pharmacol. 2015;55(4):478–9.

    Article  CAS  PubMed  Google Scholar 

  220. Koyama N, Saito K, Nishioka Y, Yusa W, Yamamoto N, Yamada Y, et al. Pharmacodynamic change in plasma angiogenic proteins: a dose-escalation phase 1 study of the multi-kinase inhibitor lenvatinib. BMC Cancer. 2014;14:530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Wilhelm SM, Dumas J, Adnane L, Lynch M, Carter CA, Schütz G, et al. Regorafenib (BAY 73-4506): a new oral multikinase inhibitor of angiogenic, stromal and oncogenic receptor tyrosine kinases with potent preclinical antitumor activity. Int J Cancer. 2011;129(1):245–55.

    Article  CAS  PubMed  Google Scholar 

  222. Solms A, Reinecke I, Fiala-Buskies S, Keunecke A, Drenth H-J, Bruix J, et al. Exposure-response relationship of regorafenib efficacy in patients with hepatocellular carcinoma. Eur J Pharm Sci Off J Eur Fed Pharm Sci. 2017;109S:S149–53.

    Google Scholar 

  223. Woo HY, Yoo SY, Heo J. New chemical treatment options in second-line hepatocellular carcinoma: what to do when sorafenib fails? Expert Opin Pharmacother. 2017;18(1):35–44.

    Article  CAS  PubMed  Google Scholar 

  224. Mir O, Coriat R, Blanchet B, Durand J-P, Boudou-Rouquette P, Michels J, et al. Sarcopenia predicts early dose-limiting toxicities and pharmacokinetics of sorafenib in patients with hepatocellular carcinoma. PLoS One. 2012;7(5):e37563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Ye L, Yang X, Guo E, Chen W, Lu L, Wang Y, et al. Sorafenib metabolism is significantly altered in the liver tumor tissue of hepatocellular carcinoma patient. PLoS One. 2014;9(5):e96664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Murray M, Gillani TB, Ghassabian S, Edwards RJ, Rawling T. Differential effects of hepatic cirrhosis on the intrinsic clearances of sorafenib and imatinib by CYPs in human liver. Eur J Pharm Sci Off J Eur Fed Pharm Sci. 2017;7(114):55–63.

    Google Scholar 

  227. Geier A, Macias RIR, Bettinger D, Weiss J, Bantel H, Jahn D, et al. The lack of the organic cation transporter OCT1 at the plasma membrane of tumor cells precludes a positive response to sorafenib in patients with hepatocellular carcinoma. Oncotarget. 2017;8(9):15846–57.

    Article  PubMed  PubMed Central  Google Scholar 

  228. Grimm D, Lieb J, Weyer V, Vollmar J, Darstein F, Lautem A, et al. Organic cation transporter 1 (OCT1) mRNA expression in hepatocellular carcinoma as a biomarker for sorafenib treatment. BMC Cancer. 2016;12(16):94.

    Article  CAS  Google Scholar 

  229. Herraez E, Lozano E, Macias RIR, Vaquero J, Bujanda L, Banales JM, et al. Expression of SLC22A1 variants may affect the response of hepatocellular carcinoma and cholangiocarcinoma to sorafenib. Hepatol Baltim Md. 2013;58(3):1065–73.

    Article  CAS  Google Scholar 

  230. Shumaker RC, Zhou M, Ren M, Fan J, Martinez G, Aluri J, et al. Effect of lenvatinib (E7080) on the QTc interval: results from a thorough QT study in healthy volunteers. Cancer Chemother Pharmacol. 2014;73(6):1109–17.

    Article  CAS  PubMed  Google Scholar 

  231. Spratlin JL, Cohen RB, Eadens M, Gore L, Camidge DR, Diab S, et al. Phase I pharmacologic and biologic study of ramucirumab (IMC-1121B), a fully human immunoglobulin G1 monoclonal antibody targeting the vascular endothelial growth factor receptor-2. J Clin Oncol. 2010;28(5):780–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Zhu AX, Kang YK, Yen CJ, Finn RS, Galle PR, Llovet JM, et al. REACH-2: a randomized, double-blind, placebo-controlled phase 3 study of ramucirumab versus placebo as second-line treatment in patients with advanced hepatocellular carcinoma (HCC) and elevated baseline alpha-fetoprotein (AFP) following first-line sorafenib. ASCO. 2018. https://doi.org/10.1200/JCO.2018.36.15_suppl.4003.

    Article  Google Scholar 

  233. Gambardella V, Tarazona N, Cejalvo JM, Roselló S, Cervantes A. Clinical pharmacokinetics and pharmacodynamics of ramucirumab in the treatment of colorectal cancer. Expert Opin Drug Metab Toxicol. 2016;12(4):449–56.

    Article  CAS  PubMed  Google Scholar 

  234. O’brien L, Westwood P, Gao L, Heathman M. Population pharmacokinetic meta-analysis of ramucirumab in cancer patients. Br J Clin Pharmacol. 2017;83:2741–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Yoshino T, Yamazaki K, Gotoh M, Nasroulah F, Gao L, Yoshizuka N, et al. Safety and pharmacokinetics of second-line ramucirumab plus FOLFIRI in Japanese patients with metastatic colorectal carcinoma. Anticancer Res. 2015;33:4003–8.

    Google Scholar 

  236. Ibrahim S, Raoul W, Lecomte T, Paintaud G, Ternant D. Pharmacokinetics partly explains the relationship between carcinoembryonic antigen level and survival of colorectal cancer patients treated with ramucirumab. Eur J Cancer. 2018;93:119–20.

    Article  CAS  Google Scholar 

  237. Cohn AL, Yoshino T, Heinemann V, Obermannova R, Bodoky G, Prausova J, et al. Exposure-response relationship of ramucirumab in patients with advanced second-line colorectal cancer: exploratory analysis of the RAISE trial. Cancer Chemother Pharmacol. 2017;80(3):599–608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Bajaj G, Wang X, Agrawal S, Gupta M, Roy A, Feng Y. Model-based population pharmacokinetic analysis of nivolumab in patients with solid tumors. CPT Pharmacomet Syst Pharmacol. 2017;6:58–66.

    Article  CAS  Google Scholar 

  239. Wong AC, Ma B. An update on the pharmacodynamics, pharmacokinetics, safety and clinical efficacy of nivolumab in the treatment of solid cancers. Expert Opin Drug Metab Toxicol. 2016;12(10):1255–61.

    Article  CAS  PubMed  Google Scholar 

  240. El-Khoueiry AB, Sangro B, Yau T, Crocenzi TS, Kudo M, Hsu C, et al. Nivolumab in patients with advanced hepatocellular carcinoma: an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet. 2017;389(10088):2492–502.

    Article  CAS  PubMed  Google Scholar 

  241. Benet LZ, Hoener B. Changes in plasma protein binding have little clinical relevance. Clin Pharmacol Ther. 2002;71(3):115–21.

    Article  CAS  PubMed  Google Scholar 

  242. Roderburg C, Luedde T. The role of the gut microbiome in the development and progression of liver cirrhosis and hepatocellular carcinoma. Gut Microbes. 2014;5(4):441–5.

    Article  PubMed  Google Scholar 

  243. Miyake Y, Yamamoto K. Role of gut microbiota in liver diseases. Hepatol Res Off J Jpn Soc Hepatol. 2013;43(2):139–46.

    Article  CAS  Google Scholar 

  244. Roy S, Trinchieri G. Microbiota: a key orchestrator of cancer therapy. Nat Rev Cancer. 2017;17(5):271–85.

    Article  CAS  PubMed  Google Scholar 

  245. Llovet J, Montal R, Sia D, Finn RS. Molecular therapies and precision medicine for hepatocellular carcinoma. Nat Rev. 2018;15:599–616.

    Google Scholar 

  246. Oken MM, Creech RH, Tormey DC, Horton J, Davis TE, McFadden ET, Carbone PP. Toxicity and response criteria of the eastern cooperative oncology group. Am J Clin Oncol. 1982;5:649–55.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Bouattour.

Ethics declarations

Funding

No sources of funding were used to conduct this study or prepare this manuscript.

Conflict of interest

Anne Hulin, Jeanick Stocco, and Mohamed Bouattour have no conflicts of interest that are directly relevant to the content of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hulin, A., Stocco, J. & Bouattour, M. Clinical Pharmacokinetics and Pharmacodynamics of Transarterial Chemoembolization and Targeted Therapies in Hepatocellular Carcinoma. Clin Pharmacokinet 58, 983–1014 (2019). https://doi.org/10.1007/s40262-019-00740-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-019-00740-w

Navigation