Skip to main content
Log in

Artemisinin and thiabendazole are potent inhibitors of cytochrome P450 1A2 (CYP1A2) activity in humans

  • Pharmacokinetics and Disposition
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Objective

To investigate the likelihood of artemisinin and thiabendazole causing pharmacokinetic interactions involving cytochrome P450 (CYP1A2) in humans given their potent inhibitory effects on the isoform in vitro.

Methods

Ten healthy volunteers received caffeine (136.5 mg), and after a washout period of 48 h, the volunteers were given a caffeine tablet (136.5 mg) together with thiabendazole (500 mg). After an additional 14 days, the volunteers received caffeine together with artemisinin (500 mg). After each treatment, plasma was obtained up to 24 h post-dose. The plasma concentrations of the drugs were measured by HPLC with UV and MS detection.

Results

Using the ratio of paraxanthine to caffeine after 4 h as an indicator of CYP1A2 activity, thiabendazole and artemisinin inhibited 92 and 66%, respectively, of the enzyme activity in vivo. In addition, the pharmacokinetics of caffeine were altered in the presence of the drugs; increases in AUC0–24 of 1.6-fold (P<0.01) and 1.3-fold of caffeine in the presence of thiabendazole and artemisinin respectively were measured. The use of in vitro data to predict the effects of thiabendazole on the formation of paraxanthine yielded good results and underestimated the effects of artemisinin when total plasma concentrations were used. Corrections for protein binding resulted in underestimation of inhibitory effects on CYP1A2.

Conclusions

Co-administration of thiabendazole or artemisinin with CYP1A2 substrates could result in clinically significant effects. Our results highlight the validity of in vitro data in predicting in vivo CYP inhibition. The formation of paraxanthine seems to be a better indicator of in vivo CYP1A2 activity than caffeine levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abdi YA, Gustafsson LL, Ericsson O, Hellgren U (1995) Handbook of drugs for tropical parasitic infections. Taylor and Francis, London

    Google Scholar 

  2. Andersson TB, Bredberg E, Ericsson H, Sjöberg H (2004) An evaluation of the in vitro metabolism data for predicting the clearance and drug-drug interaction potential of CYP2C9 substrates. Drug Metab Dispos 32:715–721

    Article  PubMed  CAS  Google Scholar 

  3. Andersson TB, Bredberg E, Ericsson H, Sjöberg H (2004) Response: predicting the clearance of CYP2C9 substrates. Drug Metab Dispos 32:1523

    Article  CAS  Google Scholar 

  4. Ashton M, Hai TN, Sy ND, Huong DX, Huong NV, Nieu NT, Cõng LD (1998) Artemisinin pharmacokinetics is time-dependent during repeated oral administration in healthy male adults. Drug Metab Dispos 26:25–27

    PubMed  CAS  Google Scholar 

  5. Bapiro TE, Andersson TB, Otter C, Hasler JA, Masimirembwa CM (2002) Cytochrome P450 1A1/2 induction antiparasitic by drugs: dose-dependent increase in ethoxyresorufin O-deethylase activity and mRNA caused by quinine, primaquine and albendazole in HepG2 cells. Eur J Clin Pharmacol 58:537–542. DOI: 10.1007/s00228-002-0512-z

    Article  PubMed  CAS  Google Scholar 

  6. Bapiro TE, Egnell A-C, Hasler JA, Masimirembwa CM (2001) Application of higher throughput screening (HTS) inhibition assays to evaluate the interaction of antiparasitic drugs with cytochrome P450s. Drug Metab Dispos 29:30–35

    PubMed  CAS  Google Scholar 

  7. Bauer LA, Raisys VA, Watts MT, Ballinger J (1982) The pharmacokinetics of thiabendazole and its metabolites in an anephric patient undergoing hemodialysis and hemoperfusion. J Clin Pharmacol 22:276–280

    PubMed  CAS  Google Scholar 

  8. Bjornsson TD, Callaghan JT, Einolf HJ, Fischer V, Gan L, Grimm S, Kao J, King P, Miwa G, Ni L, Kumar G, McLeod J, Obach SR, Roberts S, Roe A, Shah A, Snikeris F, Sullivan JT, Tweedie D, Vega JM, Walsh J, Wrighton SA (2003) The conduct of in vitro and in vivo drug-drug interaction studies: a Pharmaceutical Research and Manufacturers of America (PhRMA) perspective. Drug Metab Dispos 31:815–832

    Article  PubMed  CAS  Google Scholar 

  9. Blanchard N, Richert L, Coassolo P, Lavé T (2004) Qualitative and quantitative assessment of drug-drug interaction potential in man, based on Ki, IC50 and inhibitor concentration. Curr Drug Metab 5:147–156

    Article  PubMed  CAS  Google Scholar 

  10. Carrillo JA, Christensen M, Ramos SI, Alm C, Dahl M-L, Benítez J, Bertilsson L (2000) Evaluation of caffeine as an in vivo probe for CYP1A2 using measurements in plasma, saliva and urine. Ther Drug Monit 22:409–417

    Article  PubMed  CAS  Google Scholar 

  11. Cheng WSC, Murphy TL, Smith MT, Cooksley GWE, Halliday JW, Powel LW (1990) Dose-dependent pharmacokinetics of caffeine in humans: relevance as a test of quantitative liver function. Clin Pharmacol Ther 47:516–524

    Article  PubMed  CAS  Google Scholar 

  12. Davit B, Reynolds K, Yuan R, Ajayi F, Conner D, Fadiran E, Gillespie B, Sahajwalla C, Huang S-M, Lesko LJ (1999) FDA evaluations using in vitro metabolism to predict and interpret in vivo metabolic drug-drug interactions: impact on labelling. J Clin Pharmacol 39:899–910

    Article  PubMed  CAS  Google Scholar 

  13. Denaro CP, Brown CR, Wilson MS, Jacob P, Benowitz NL (1990) Dose dependency of caffeine metabolism with repeated dosing. Clin Pharmacol Ther 48:277–285

    Article  PubMed  CAS  Google Scholar 

  14. Dhingra V, Rao VK, Narasu LM (2000) Current status of artemisinin and its derivatives as antimalarial drugs. Life Sci 66:279–300. DOI: 10.1016/S0024-3205(99)00356-2

    Article  PubMed  CAS  Google Scholar 

  15. Edwards G, Breckenridge AM (1988) Clinical pharmacokinetics of anthelmintic drugs. Clin Pharmacokinet 15:67–93

    PubMed  CAS  Google Scholar 

  16. Gourgiotou K, Nicolaidou E, Panagiotopoulos A, Hatziolou JE, Katsambast AD (2001) Treatment of widespread cutaneous larva migrans with thiabendazole. J Eur Acad Dermatol Venereol 15:578–580. DOI:10.1046/j.1468-3083.2001.00358.x

    Article  PubMed  CAS  Google Scholar 

  17. Grover JK, Vats V, Uppal G, Yadav S (2001) Anthelmintics: a review. Trop Gastroenterol 22:180–189

    PubMed  CAS  Google Scholar 

  18. Gu L, Gonzalez FJ, Kalow W, Tang BK (1992) Biotransformation of caffeine, paraxanthine, theobromine and theophylline by cDNA-expressed human CYP1A2 and CYP2E1. Pharmacogenetics 2:73–77

    Article  PubMed  CAS  Google Scholar 

  19. Ha HR, Chen J, Krähenbühl S, Follath F (1996) Biotransformation of caffeine by cDNA-expressed human cytochrome P-450. Eur J Clin Pharmacol 49:309–315

    Article  PubMed  CAS  Google Scholar 

  20. Ito K, Iwatsubo T, Kanamitsu S, Nakajima Y, Sugiyama Y (1998) Quantitative prediction of in vivo clearance and drug interactions from in vitro data on metabolism, together with binding and transport. Annu Rev Pharmacol Toxicol 38:461–499. DOI:10.1146/annurev.pharmtox.38.1.461

    Article  PubMed  CAS  Google Scholar 

  21. Juntti-Patinen L, Neuvonen PJ (2002) Drug-related deaths in a university central hospital. Eur J Clin Pharmacol 58:479–482. DOI: 10.1007/s00228-002-0501-2

    Article  PubMed  CAS  Google Scholar 

  22. Lazarou J, Pomeranz BH, Corey PN (1998) Incidence of adverse drug reactions in hospitalised patients: a meta-analysis of prospective studies. J Am Med Assoc 279:1200–1205

    Article  CAS  Google Scholar 

  23. Lew G, Murray WE, Lane JR, Haeger E (1989) Theophylline-thiabendazole drug interaction. Clin Pharm 8:225–227

    PubMed  CAS  Google Scholar 

  24. Lin JH, Lu AYH (1998) Inhibition and induction of human cytochrome P450 and the clinical implications. Clin Pharmacokinet 35:361–390

    Article  PubMed  CAS  Google Scholar 

  25. Navaratnam V, Mansor SM, Sit N-W, Grace J, Li Q, Olliaro P (2000) Pharmacokinetics of artemisinin-type compounds. Clin Pharmacokinet 39:255–270

    Article  PubMed  CAS  Google Scholar 

  26. Price RJ, Scott MP, Walters DG, Stierum RH, Groten JP, Meredith C, Lake BG (2004) Effect of thiabendazole on some rat hepatic xenobiotic metabolising enzymes. Food Chem Toxicol 42:899–908. DOI: 10.1016/j.fct.2004.01.013

    Article  PubMed  CAS  Google Scholar 

  27. Rasmussen BB, Maenpaa J, Pelkonen O, Loft S, Poulsen HE, Lykkesfeldt J, Brosen K (1995) Selective serotonin reuptake inhibitors and theophylline metabolism in human liver microsomes: potent inhibition by fluvoxamine. Br J Clin Pharmacol 39:151–159

    PubMed  CAS  Google Scholar 

  28. Rost KL, Roots I (1994) Accelerated caffeine metabolism after omeprazole treatment is indicated by urinary metabolite ratios: coincidence with plasma clearance and breath test. Clin Pharmacol Ther 55:402–411

    Article  PubMed  CAS  Google Scholar 

  29. Rowland-Yeo K, Howgate EM, Tucker GT, Rostami-Hodjegan A (2004) Predicting the clearance of CYP2C9 substrates. Drug Metab Dispos 32:1522

    Article  PubMed  CAS  Google Scholar 

  30. Satoh M, Kokaze A (2004) Treatment strategies in controlling strongyloidiasis. Expert Opin Pharmacother 5:2293–2301. DOI:10.1517/14656566.5.11.2293

    Article  PubMed  CAS  Google Scholar 

  31. Schneider D, GannonR, Sweeney K, Shore E (1990) Theophylline antiparasitic drug interactions. A case report and study of the influence of theophylline pharmacokinetics in adults. Chest 97:84–87

    Article  PubMed  CAS  Google Scholar 

  32. Tjia JF, Colbert J, Back DJ (1996) Theophylline metabolism in human liver microsomes: inhibition studies. J Pharmacol Exp Ther 276:912–917

    PubMed  CAS  Google Scholar 

  33. Tucker GT (1992) The rational selection of drug interaction studies: implications of recent advances in drug metabolism. Int J Clin Pharmacol Ther Toxicol 30:550–553

    PubMed  CAS  Google Scholar 

  34. Tucker GT, Houston BJ, Huang S-M (2001) Optimising drug development: strategies to assess drug metabolism/transporter interaction potential - towards a consensus. Br J Clin Pharmacol 52:107–117. DOI:10.1046/j.0306-5251.2001.temp.1441.x

    Article  PubMed  CAS  Google Scholar 

  35. Lelo A, Miners JO, Robson RA, Birkett DJ (1986) Quantitative assessment of caffeine partial clearances in man. Br J Clin Pharmacol 22:183–186

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the African Institute of Biomedical Science and Technology (AIBST) Research Fund, AstraZeneca PLC, the International Programme in the Chemical Sciences (IPICS), Uppsala, Sweden, and the Southern African Regional Cooperation in Biochemistry, Molecular Biology and Biotechnology (SARBIO) is gratefully acknowledged. Dr Xueqing Li is also gratefully acknowledged for her assistance with LC/MS analysis of samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Collen M. Masimirembwa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bapiro, T.E., Sayi, J., Hasler, J.A. et al. Artemisinin and thiabendazole are potent inhibitors of cytochrome P450 1A2 (CYP1A2) activity in humans. Eur J Clin Pharmacol 61, 755–761 (2005). https://doi.org/10.1007/s00228-005-0037-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-005-0037-3

Keywords

Navigation