Skip to main content
Log in

Significant Correlations between p-Cresol Sulfate and Mycophenolic Acid Plasma Concentrations in Adult Kidney Transplant Recipients

  • Original Research Article
  • Published:
Clinical Drug Investigation Aims and scope Submit manuscript

Abstract

Background and Objectives

Mycophenolic acid (MPA) is a commonly prescribed life-long immunosuppressant for kidney transplant recipients. The frequently observed large variations in MPA plasma exposure may lead to severe adverse outcomes; therefore, characterizations of contributing factors can potentially improve the precision dosing of MPA. Our group recently reported the potent inhibitory effects of p-cresol (a protein-bound uremic toxin that can be accumulated in kidney transplant patients) on the hepatic metabolism of MPA in human in vitro models. Based on these data, the hypothesis for this clinical investigation was that a direct correlation between p-cresol and MPA plasma exposure should be evident in adult kidney transplant recipients.

Methods

Using a prospective and observational approach, adult kidney transplant recipients within the first year after transplant on oral mycophenolate mofetil (with tacrolimus ± prednisone) were screened for recruitment. The exclusion criteria were cold ischemia time > 30 h, malignancy, pregnancy, severe renal dysfunction (i.e., estimated glomerular filtration rate, eGFR, < 10 mL/min/1.73 m2), active graft rejection, or MPA intolerance. Patients’ demographic and biochemistry data were collected. Total and free plasma concentrations of MPA, MPA glucuronide (MPAG), and total p-cresol sulfate (the predominant, quantifiable form of p-cresol in the plasma) were quantified using validated assays. Correlational and categorical analyses were performed using GraphPad Prism.

Results

Forty patients (11 females) were included: donor type (living/deceased: 20/20), induction regimen (basiliximab/thymoglobulin/basiliximab followed by thymoglobulin: 35/3/2), post-transplant time (74 ± 60 days, mean ± standard deviation), age (53.7 ± 12.4 years), bodyweight (79.8 ± 18.5 kg), eGFR (51.9 ± 18.0 mL/min/1.73 m2), serum albumin (3.6 ± 0.5 g/dL), prednisone dose (18.5 ± 13.2 mg, n = 33), and tacrolimus trough concentration (9.4 ± 2.4 µg/L). Based on Spearman analysis, significant control correlations supporting the validity of our dataset were observed between total MPA trough concentration (C0) and total MPAG C0 (correlation coefficient [R] = 0.39), ratio of total MPAG C0-to-total MPA C0 and post-transplant time (R = − 0.56), total MPAG C0 and eGFR (R = − 0.35), and p-cresol sulfate concentration and eGFR (R = − 0.70). Our primary analysis indicated the novel observation that total MPA C0 (R = 0.39), daily dose-normalized total MPA C0 (R = 0.32), and bodyweight-normalized total MPA C0 (R = 0.32) were significantly correlated with plasma p-cresol sulfate concentrations. Consistently, patients categorized with elevated p-cresol sulfate concentrations (i.e., ≥ median of 3.2 µg/mL) also exhibited increased total MPA C0 (by 57 % vs those below median), daily dose-normalized total MPA C0 (by 89 %), and bodyweight-normalized total MPA C0 (by 62 %). Our secondary analyses with MPA metabolites, unbound concentrations, free fractions, and MPA metabolite ratios supported additional potential interacting mechanisms.

Conclusion

We have identified a novel, positive association between p-cresol sulfate exposure and total MPA C0 in adult kidney transplant recipients, which is supported by published mechanistic in vitro data. Our findings confirm a potential role of p-cresol as a significant clinical variable affecting the pharmacokinetics of MPA. These data also provide the justifications for conducting subsequent full-scale pharmacokinetic-pharmacodynamic studies to further characterize the cause-effect relationships of this interaction, which could also rule out potential confounding variables not adequately controlled in this correlational study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Staatz CE, Tett SE. Clinical pharmacokinetics and pharmacodynamics of mycophenolate in solid organ transplant recipients. Clin Pharmacokinet. 2007;46(1):13–58. https://doi.org/10.2165/00003088-200746010-00002.

    Article  CAS  PubMed  Google Scholar 

  2. Staatz CE, Tett SE. Pharmacology and toxicology of mycophenolate in organ transplant recipients: an update. Arch Toxicol. 2014;88(7):1351–89. https://doi.org/10.1007/s00204-014-1247-1.

    Article  CAS  PubMed  Google Scholar 

  3. van Gelder T, Hesselink DA. Mycophenolate revisited. Transpl Int. 2015;28(5):508–15. https://doi.org/10.1111/tri.12554.

    Article  CAS  PubMed  Google Scholar 

  4. Kiang TK, Ensom MH. Therapeutic drug monitoring of mycophenolate in adult solid organ transplant patients: an update. Expert Opin Drug Metab Toxicol. 2016;12(5):545–53. https://doi.org/10.1517/17425255.2016.1170806.

    Article  CAS  PubMed  Google Scholar 

  5. Kiang TKL, Ensom MHH. Population pharmacokinetics of mycophenolic acid: an update. Clin Pharmacokinet. 2018;57(5):547–58. https://doi.org/10.1007/s40262-017-0593-6.

    Article  CAS  PubMed  Google Scholar 

  6. Bergan S, Brunet M, Hesselink DA, Johnson-Davis KL, Kunicki PK, Lemaitre F, et al. Personalized therapy for mycophenolate: consensus report by the international association of therapeutic drug monitoring and clinical toxicology. Ther Drug Monit. 2021;43(2):150–200. https://doi.org/10.1097/FTD.0000000000000871.

    Article  CAS  PubMed  Google Scholar 

  7. Picard N, Ratanasavanh D, Premaud A, Le Meur Y, Marquet P. Identification of the UDP-glucuronosyltransferase isoforms involved in mycophenolic acid phase II metabolism. Drug Metab Dispos. 2005;33(1):139–46. https://doi.org/10.1124/dmd.104.001651.

    Article  CAS  PubMed  Google Scholar 

  8. Rong Y, Jun H, Kiang TKL. Population pharmacokinetics of mycophenolic acid in paediatric patients. Br J Clin Pharmacol. 2021;87(4):1730–57. https://doi.org/10.1111/bcp.14590.

    Article  CAS  PubMed  Google Scholar 

  9. Sherwin CM, Fukuda T, Brunner HI, Goebel J, Vinks AA. The evolution of population pharmacokinetic models to describe the enterohepatic recycling of mycophenolic acid in solid organ transplantation and autoimmune disease. Clin Pharmacokinet. 2011;50(1):1–24. https://doi.org/10.2165/11536640-000000000-00000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rong Y, Mayo P, Ensom MHH, Kiang TKL. Population pharmacokinetics of mycophenolic acid co-administered with tacrolimus in corticosteroid-free adult kidney transplant patients. Clin Pharmacokinet. 2019;58(11):1483–95. https://doi.org/10.1007/s40262-019-00771-3.

    Article  CAS  PubMed  Google Scholar 

  11. Kiang TKL, Ensom MHH. Exposure-toxicity relationships of mycophenolic acid in adult kidney transplant patients. Clin Pharmacokinet. 2019;58(12):1533–52. https://doi.org/10.1007/s40262-019-00802-z.

    Article  CAS  PubMed  Google Scholar 

  12. van Gelder T, Hilbrands LB, Vanrenterghem Y, Weimar W, de Fijter JW, Squifflet JP, et al. A randomized double-blind, multicenter plasma concentration controlled study of the safety and efficacy of oral mycophenolate mofetil for the prevention of acute rejection after kidney transplantation. Transplantation. 1999;68(2):261–6. https://doi.org/10.1097/00007890-199907270-00018.

    Article  PubMed  Google Scholar 

  13. Kiang TKL, Partovi N, Shapiro RJ, Berman JM, Collier AC, Ensom MHH. Regression and genomic analyses on the association between dose-normalized mycophenolic acid exposure and absolute neutrophil count in steroid-free, de novo kidney transplant recipients. Clin Drug Investig. 2018;38(11):1011–22. https://doi.org/10.1007/s40261-018-0694-5.

    Article  CAS  PubMed  Google Scholar 

  14. Hurst FP, Belur P, Nee R, Agodoa LY, Patel P, Abbott KC, et al. Poor outcomes associated with neutropenia after kidney transplantation: Analysis of united states renal data system. Transplantation. 2011;92(1):36–40. https://doi.org/10.1097/TP.0b013e31821c1e70.

    Article  PubMed  Google Scholar 

  15. Mavrakanas TA, Fournier MA, Clairoux S, Amiel JA, Tremblay ME, Vinh DC, et al. Neutropenia in kidney and liver transplant recipients: risk factors and outcomes. Clin Transplant. 2017;31:10. https://doi.org/10.1111/ctr.13058.

    Article  CAS  Google Scholar 

  16. Zafrani L, Truffaut L, Kreis H, Etienne D, Rafat C, Lechaton S, et al. Incidence, risk factors and clinical consequences of neutropenia following kidney transplantation: a retrospective study. Am J Transplant. 2009;9(8):1816–25. https://doi.org/10.1111/j.1600-6143.2009.02699.x.

    Article  CAS  PubMed  Google Scholar 

  17. Vanholder R, De Smet R, Lesaffer G. p-Cresol: a toxin revealing many neglected but relevant aspects of uraemic toxicity. Nephrol Dial Transplant. 1999;14(12):2813–5. https://doi.org/10.1093/ndt/14.12.2813.

    Article  CAS  PubMed  Google Scholar 

  18. Gryp T, Vanholder R, Vaneechoutte M, Glorieux G. p-Cresyl sulfate. Toxins (Basel). 2017;9:2. https://doi.org/10.3390/toxins9020052.

    Article  CAS  Google Scholar 

  19. de Loor H, Bammens B, Evenepoel P, De Preter V, Verbeke K. Gas chromatographic-mass spectrometric analysis for measurement of p-cresol and its conjugated metabolites in uremic and normal serum. Clin Chem. 2005;51(8):1535–8. https://doi.org/10.1373/clinchem.2005.050781.

    Article  CAS  PubMed  Google Scholar 

  20. Martinez AW, Recht NS, Hostetter TH, Meyer TW. Removal of p-cresol sulfate by hemodialysis. J Am Soc Nephrol. 2005;16(11):3430–6. https://doi.org/10.1681/ASN.2005030310.

    Article  CAS  PubMed  Google Scholar 

  21. Poesen R, Evenepoel P, de Loor H, Kuypers D, Augustijns P, Meijers B. Metabolism, protein binding, and renal clearance of microbiota-derived p-cresol in patients with CKD. Clin J Am Soc Nephrol. 2016;11(7):1136–44. https://doi.org/10.2215/CJN.00160116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vanholder R, Bammens B, de Loor H, Glorieux G, Meijers B, Schepers E, et al. Warning: the unfortunate end of p-cresol as a uraemic toxin. Nephrol Dial Transplant. 2011;26(5):1464–7. https://doi.org/10.1093/ndt/gfr056.

    Article  CAS  PubMed  Google Scholar 

  23. Rong Y, Kiang TKL. Mechanisms of metabolism interaction between p-cresol and mycophenolic acid. Toxicol Sci. 2020;173(2):267–79. https://doi.org/10.1093/toxsci/kfz231.

    Article  CAS  PubMed  Google Scholar 

  24. Duranton F, Cohen G, De Smet R, Rodriguez M, Jankowski J, Vanholder R, et al. Normal and pathologic concentrations of uremic toxins. J Am Soc Nephrol. 2012;23(7):1258–70. https://doi.org/10.1681/ASN.2011121175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liabeuf S, Barreto DV, Barreto FC, Meert N, Glorieux G, Schepers E, et al. Free p-cresylsulphate is a predictor of mortality in patients at different stages of chronic kidney disease. Nephrol Dial Transplant. 2010;25(4):1183–91. https://doi.org/10.1093/ndt/gfp592.

    Article  CAS  PubMed  Google Scholar 

  26. Liabeuf S, Glorieux G, Lenglet A, Diouf M, Schepers E, Desjardins L, et al. Does p-cresylglucuronide have the same impact on mortality as other protein-bound uremic toxins? PLoS ONE. 2013;8(6): e67168. https://doi.org/10.1371/journal.pone.0067168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ligabue G, Damiano F, Cuoghi A, De Biasi S, Bellei E, Granito M, et al. p-Cresol and cardiovascular risk in kidney transplant recipients. Transplant Proc. 2015;47(7):2121–5. https://doi.org/10.1016/j.transproceed.2015.02.033.

    Article  CAS  PubMed  Google Scholar 

  28. Andre C, Choukroun G, Bennis Y, Kamel S, Lemaire-Hurtel AS, Masmoudi K, et al. Potential interactions between uremic toxins and drugs: an application in kidney transplant recipients treated with calcineurin inhibitors. Nephrol Dial Transplant. 2021. https://doi.org/10.1093/ndt/gfab114.

    Article  PubMed  Google Scholar 

  29. Huang ST, Shu KH, Cheng CH, Wu MJ, Yu TM, Chuang YW, et al. Serum total p-cresol and indoxyl sulfate correlated with stage of chronic kidney disease in renal transplant recipients. Transplant Proc. 2012;44(3):621–4. https://doi.org/10.1016/j.transproceed.2011.11.023.

    Article  CAS  PubMed  Google Scholar 

  30. Rong Y, Kiang TKL. Development and validation of a sensitive liquid-chromatography tandem mass spectrometry assay for mycophenolic acid and metabolites in hepaRG cell culture: characterization of metabolism interactions between p-cresol and mycophenolic acid. Biomed Chromatogr. 2019;33(8): e4549. https://doi.org/10.1002/bmc.4549.

    Article  CAS  PubMed  Google Scholar 

  31. Guida B, Cataldi M, Memoli A, Trio R, di-Maro M, Grumetto L, et al. Effect of a short-course treatment with synbiotics on plasma p-cresol concentration in kidney transplant recipients. J Am Coll Nutr. 2017;36(7):586–91. https://doi.org/10.1080/07315724.2017.1334602.

    Article  CAS  PubMed  Google Scholar 

  32. Poesen R, Evenepoel P, de Loor H, Bammens B, Claes K, Sprangers B, et al. The influence of renal transplantation on retained microbial-human co-metabolites. Nephrol Dial Transplant. 2016;31(10):1721–9. https://doi.org/10.1093/ndt/gfw009.

    Article  CAS  PubMed  Google Scholar 

  33. Linde E, van-Roij CJM, Meijers BKI, De-Loor H, Kessels RPC, Wetzels JFM. Cognitive function and uremic toxins after kidney transplantation: an exploratory study. Kidney. 2020;1(12):1398–406. https://doi.org/10.34067/kid.0000272020.

    Article  Google Scholar 

  34. van Hest RM, van Gelder T, Bouw R, Goggin T, Gordon R, Mamelok RD, et al. Time-dependent clearance of mycophenolic acid in renal transplant recipients. Br J Clin Pharmacol. 2007;63(6):741–52. https://doi.org/10.1111/j.1365-2125.2006.02841.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cohen J, Cohen P, West SG, Aiken LS. Applied multiple regression/correlation analysis for the behavioral sciences. 3rd ed. New York: Taylor & Francis Group; 2002.

    Google Scholar 

  36. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150(9):604–12. https://doi.org/10.7326/0003-4819-150-9-200905050-00006.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Nowak I, Shaw LM. Mycophenolic acid binding to human serum albumin: characterization and relation to pharmacodynamics. Clin Chem. 1995;41(7):1011–7.

    Article  CAS  PubMed  Google Scholar 

  38. Liu Y, Liu L, Li J, Fu Q, Zhang H, Wu C, et al. Validated LC-MS/MS method for quantitation of total and free mycophenolic acid concentration and its application to a pharmacokinetic study in pediatric renal transplant recipients. Biomed Chromatogr. 2021;35(2): e4989. https://doi.org/10.1002/bmc.4989.

    Article  CAS  PubMed  Google Scholar 

  39. Rong Y, Kiang TKL. Characterizations of human UDP-glucuronosyltransferase enzymes in the conjugation of p-cresol. Toxicol Sci. 2020;176(2):285–96. https://doi.org/10.1093/toxsci/kfaa072.

    Article  CAS  PubMed  Google Scholar 

  40. Rong Y, Kiang TKL. Characterization of human sulfotransferases catalyzing the formation of p-cresol sulfate and identification of mefenamic acid as a potent metabolism inhibitor and potential therapeutic agent for detoxification. Toxicol Appl Pharmacol. 2021;15(425): 115553. https://doi.org/10.1016/j.taap.2021.115553.

    Article  CAS  Google Scholar 

  41. US Food and Drug Administration (FDA). Guidance for industry: Bioanalytical method validation. 2021. https://www.Fda.Gov/files/drugs/published/bioanalytical-method-validation-guidance-for-industry.Pdf. Accessed 15 Sep 2021.

  42. Kiang TK, Ng K, Ensom MH. Multiple regression analysis of factors predicting mycophenolic acid free fraction in 91 adult organ transplant recipients. Ther Drug Monit. 2013;35(6):867–71. https://doi.org/10.1097/FTD.0b013e318299fa38.

    Article  CAS  PubMed  Google Scholar 

  43. Wolters Kluwer. Lexicomp drug interaction database. 2021. https://online.Lexi.Com/lco/action/login. Accessed 30 Aug 2021.

  44. Graphpad Prism. 2021. https://www.Graphpad.Com/scientific-software/prism/. Accessed 01 Jun 2021.

  45. Dynalife Medical Labs. Reference ranges for laboratory tests. 2021. https://www.Dynalife.Ca/testdirectory. Accessed 10 Sep 2021.

  46. Jiao Z, Zhong JY, Zhang M, Shi XJ, Yu YQ, Lu WY. Total and free mycophenolic acid and its 7-o-glucuronide metabolite in chinese adult renal transplant patients: Pharmacokinetics and application of limited sampling strategies. Eur J Clin Pharmacol. 2007;63(1):27–37. https://doi.org/10.1007/s00228-006-0215-y.

    Article  CAS  PubMed  Google Scholar 

  47. Atcheson BA, Taylor PJ, Mudge DW, Johnson DW, Hawley CM, Campbell SB, et al. Mycophenolic acid pharmacokinetics and related outcomes early after renal transplant. Br J Clin Pharmacol. 2005;59(3):271–80. https://doi.org/10.1111/j.1365-2125.2004.02235.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Colom H, Andreu F, van Gelder T, Hesselink DA, de Winter BCM, Bestard O, et al. Prediction of free from total mycophenolic acid concentrations in stable renal transplant patients: A population-based approach. Clin Pharmacokinet. 2018;57(7):877–93. https://doi.org/10.1007/s40262-017-0603-8.

    Article  CAS  PubMed  Google Scholar 

  49. Quintairos L, Colom H, Millan O, Fortuna V, Espinosa C, Guirado L, et al. Early prognostic performance of mir155-5p monitoring for the risk of rejection: logistic regression with a population pharmacokinetic approach in adult kidney transplant patients. PLoS ONE. 2021;16(1): e0245880. https://doi.org/10.1371/journal.pone.0245880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhu S, Rong Y, Kiang TKL. Effects of p-cresol on oxidative stress, glutathione depletion, and necrosis in heparg cells: Comparisons to other uremic toxins and the role of p-cresol glucuronide formation. Pharmaceutics. 2021;13:6. https://doi.org/10.3390/pharmaceutics13060857.

    Article  CAS  Google Scholar 

  51. Shaw LM, Korecka M, Venkataramanan R, Goldberg L, Bloom R, Brayman KL. Mycophenolic acid pharmacodynamics and pharmacokinetics provide a basis for rational monitoring strategies. Am J Transplant. 2003;3(5):534–42. https://doi.org/10.1034/j.1600-6143.2003.00079.x.

    Article  CAS  PubMed  Google Scholar 

  52. Baczkowska T, Sadowska A, Perkowska-Ptasinska A, Lewandowski Z, Cieciura T, Pazik J, et al. Optimal mycophenolic acid and mycophenolic acid glucuronide levels at the early period after kidney transplantation are the key contributors to improving long-term outcomes. Transplant Proc. 2009;41(8):3019–23. https://doi.org/10.1016/j.transproceed.2009.08.009.

    Article  CAS  PubMed  Google Scholar 

  53. Staatz CE, Tett SE. Maximum a posteriori bayesian estimation of mycophenolic acid area under the concentration-time curve: is this clinically useful for dosage prediction yet? Clin Pharmacokinet. 2011;50(12):759–72. https://doi.org/10.2165/11596380-000000000-00000.

    Article  CAS  PubMed  Google Scholar 

  54. Jiang Z, Hu N. Effect of UGT polymorphisms on pharmacokinetics and adverse reactions of mycophenolic acid in kidney transplant patients. Pharmacogenomics. 2021;22(15):1019–40. https://doi.org/10.2217/pgs-2021-0087.

    Article  CAS  PubMed  Google Scholar 

  55. Knights KM, Spencer SM, Fallon JK, Chau N, Smith PC, Miners JO. Scaling factors for the in vitro-in vivo extrapolation (IV-IVE) of renal drug and xenobiotic glucuronidation clearance. Br J Clin Pharmacol. 2016;81(6):1153–64. https://doi.org/10.1111/bcp.12889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rowland A, Miners JO, Mackenzie PI. The UDP-glucuronosyltransferases: their role in drug metabolism and detoxification. Int J Biochem Cell Biol. 2013;45(6):1121–32. https://doi.org/10.1016/j.biocel.2013.02.019.

    Article  CAS  PubMed  Google Scholar 

  57. Matsunaga N, Wada S, Nakanishi T, Ikenaga M, Ogawa M, Tamai I. Mathematical modeling of the in vitro hepatic disposition of mycophenolic acid and its glucuronide in sandwich-cultured human hepatocytes. Mol Pharm. 2014;11(2):568–79. https://doi.org/10.1021/mp400513k.

    Article  CAS  PubMed  Google Scholar 

  58. Laouari D, Yang R, Veau C, Blanke I, Friedlander G. Two apical multidrug transporters, P-gp and MRP2, are differently altered in chronic renal failure. Am J Physiol Renal Physiol. 2001;280(4):F636–45. https://doi.org/10.1152/ajprenal.2001.280.4.F636.

    Article  CAS  PubMed  Google Scholar 

  59. van Gelder T. How cyclosporine reduces mycophenolic acid exposure by 40% while other calcineurin inhibitors do not. Kidney Int. 2021;100(6):1185–9. https://doi.org/10.1016/j.kint.2021.06.036.

    Article  CAS  PubMed  Google Scholar 

  60. Mutsaers HA, van den Heuvel LP, Ringens LH, Dankers AC, Russel FG, Wetzels JF, et al. Uremic toxins inhibit transport by breast cancer resistance protein and multidrug resistance protein 4 at clinically relevant concentrations. PLoS ONE. 2011;6(4): e18438. https://doi.org/10.1371/journal.pone.0018438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Berthier J, Benmameri M, Sauvage FL, Fabre G, Chantemargue B, Arnion H, et al. MRP4 is responsible for the efflux transport of mycophenolic acid beta-d glucuronide (MPAG) from hepatocytes to blood. Xenobiotica. 2021;51(1):105–14. https://doi.org/10.1080/00498254.2020.1813352.

    Article  CAS  PubMed  Google Scholar 

  62. Liabeuf S, Villain C, Massy ZA. Protein-bound toxins: has the cinderella of uraemic toxins turned into a princess? Clin Sci (Lond). 2016;130(23):2209–16. https://doi.org/10.1042/CS20160393.

    Article  CAS  Google Scholar 

  63. Prokopienko AJ, Nolin TD. Microbiota-derived uremic retention solutes: Perpetrators of altered nonrenal drug clearance in kidney disease. Expert Rev Clin Pharmacol. 2018;11(1):71–82. https://doi.org/10.1080/17512433.2018.1378095.

    Article  CAS  PubMed  Google Scholar 

  64. Picard N, Yee SW, Woillard JB, Lebranchu Y, Le Meur Y, Giacomini KM, et al. The role of organic anion-transporting polypeptides and their common genetic variants in mycophenolic acid pharmacokinetics. Clin Pharmacol Ther. 2010;87(1):100–8. https://doi.org/10.1038/clpt.2009.205.

    Article  CAS  PubMed  Google Scholar 

  65. Reyes M, Benet LZ. Effects of uremic toxins on transport and metabolism of different biopharmaceutics drug disposition classification system xenobiotics. J Pharm Sci. 2011;100(9):3831–42. https://doi.org/10.1002/jps.22640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sato T, Yamaguchi H, Kogawa T, Abe T, Mano N. Organic anion transporting polypeptides 1B1 and 1B3 play an important role in uremic toxin handling and drug-uremic toxin interactions in the liver. J Pharm Pharm Sci. 2014;17(4):475–84. https://doi.org/10.18433/j3m89q.

    Article  PubMed  Google Scholar 

  67. Gross P, Massy ZA, Henaut L, Boudot C, Cagnard J, March C, et al. para-Cresyl sulfate acutely impairs vascular reactivity and induces vascular remodeling. J Cell Physiol. 2015;230(12):2927–35. https://doi.org/10.1002/jcp.25018.

    Article  CAS  PubMed  Google Scholar 

  68. Meijers BK, Van Kerckhoven S, Verbeke K, Dehaen W, Vanrenterghem Y, Hoylaerts MF, et al. The uremic retention solute p-cresyl sulfate and markers of endothelial damage. Am J Kidney Dis. 2009;54(5):891–901. https://doi.org/10.1053/j.ajkd.2009.04.022.

    Article  CAS  PubMed  Google Scholar 

  69. Uwai Y, Motohashi H, Tsuji Y, Ueo H, Katsura T, Inui K. Interaction and transport characteristics of mycophenolic acid and its glucuronide via human organic anion transporters hOAT1 and hOAT3. Biochem Pharmacol. 2007;74(1):161–8. https://doi.org/10.1016/j.bcp.2007.03.024.

    Article  CAS  PubMed  Google Scholar 

  70. Watanabe H, Sakaguchi Y, Sugimoto R, Kaneko K, Iwata H, Kotani S, et al. Human organic anion transporters function as a high-capacity transporter for p-cresyl sulfate, a uremic toxin. Clin Exp Nephrol. 2014;18(5):814–20. https://doi.org/10.1007/s10157-013-0902-9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Alberta Health Services and study participants as the data sources for this manuscript. To maintain the blinding of the investigative team, independent data extraction was contracted to Prime Site Research Solutions Inc (Edmonton, Alberta, Canada).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tony K. L. Kiang.

Ethics declarations

Funding

This study was funded by a start-up grant provided by the University of Alberta to Dr. Tony Kiang (RES0036916).

Conflict of interest

Yan Rong, Penny Colbourne, Sita Gourishankar, and Tony Kiang declare that they have no conflict of interest.

Availability of data and material

Original data are available from the corresponding author on reasonable request.

Code availability

Not applicable.

Ethics approval

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the University of Alberta Research Ethics Board (date: December 21, 2020; study ID: Pro00105082).

Consent to participate

Not required as recommended/approved by the University of Alberta Research Ethics Board (Pro00105082). This was based on the study being non-invasive and non-interventional (i.e., no deviation from routine clinical care). The investigative team had no contact with the participants and was totally blinded from their identities.

Consent for publication

Not applicable.

Authors’ contributions

All authors contributed to the study conception and design. Material preparation, data collection, analytical measurements, and data analyses were performed by Yan Rong and Dr. Tony Kiang. The first draft of the manuscript was written by Yan Rong. All authors commented on the final version of the manuscript, which was edited by Dr. Tony Kiang.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 379 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rong, Y., Colbourne, P., Gourishankar, S. et al. Significant Correlations between p-Cresol Sulfate and Mycophenolic Acid Plasma Concentrations in Adult Kidney Transplant Recipients. Clin Drug Investig 42, 207–219 (2022). https://doi.org/10.1007/s40261-022-01121-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40261-022-01121-1

Navigation