Skip to main content

Advertisement

Log in

Challenges and Possible Solutions to Direct-Acting Oral Anticoagulants (DOACs) Dosing in Patients with Extreme Bodyweight and Renal Impairment

  • Current Opinion
  • Published:
American Journal of Cardiovascular Drugs Aims and scope Submit manuscript

Abstract

This article aims to highlight the dosing issues of direct oral anticoagulants (DOACs) in patients with renal impairment and/or obesity in an attempt to develop solutions employing advanced data-driven techniques. DOACs have become widely accepted by clinicians worldwide because of their superior clinical profiles, more predictable pharmacokinetics, and hence more convenient dosing relative to other anticoagulants. However, the optimal dosing of DOACs in extreme bodyweight  patients and patients with renal impairment is difficult to achieve using the conventional dosing approach. The standard dosing approach (fixed-dose) is based on limited data from clinical studies. The existing formulae (models) for determining the appropriate doses for these patient groups leads to suboptimal dosing. This problem of mis-dosing is worsened by the lack of standardized laboratory parameters for monitoring the exposure to DOACs in renal failure and extreme bodyweight patients. Model-informed precision dosing (MIPD) encompasses a range of techniques like machine learning and pharmacometrics modelling, which could uncover key variables and relationships as well as shed more light on the pharmacokinetics and pharmacodynamics of DOACs in patients with extreme bodyweight or renal impairment. Ultimately, this individualized approach—if implemented in clinical practice—could optimise dosing for the DOACs for better safety and efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. National Institute for Health and Care Excellence NICE. Overview | Anticoagulants, including direct-acting oral anticoagulants (DOACs) [KTT16] | Advice | [Internet]. www.nice.org.uk. 2016. https://www.nice.org.uk/advice/ktt16. Accessed 12 Apr 2022.

  2. Huisman MV, Rothman KJ, Paquette M, Teutsch C, Diener H-C, Dubner SJ, et al. The changing landscape for stroke prevention in AF. J Am Coll Cardiol [Internet]. 2017;69(7):777–85.

    Article  Google Scholar 

  3. Kearon C, Akl EA, Ornelas J, Blaivas A, Jimenez D, Bounameaux H, et al. Antithrombotic therapy for VTE disease. Chest [Internet]. 2016;149(2):315–52.

    Article  Google Scholar 

  4. Chen A, Stecker E, Warden AB. Direct oral anticoagulant use: a practical guide to common clinical challenges. J Am Heart Assoc. 2020;9(13):e017559.

    Article  CAS  Google Scholar 

  5. Mohan A, Wanat MA, Abughosh SM. Medication taking behaviors in patients taking warfarin versus direct oral anticoagulants: a systematic review. Expert Rev Cardiovasc Ther. 2019;17(6):427–34.

    Article  CAS  Google Scholar 

  6. Alfirevic A, Downing J, Daras K, Comerford T, Pirmohamed M, Barr B. Has the introduction of direct oral anticoagulants (DOACs) in England increased emergency admissions for bleeding conditions? A longitudinal ecological study. BMJ Open [Internet]. 2020;10(5): e033357.

    Article  Google Scholar 

  7. Schieszer J. Revisiting Guidelines on the Use of Direct Oral Anticoagulants in Obese Patients With Atrial Fibrillation [Internet]. Hematology Advisor. 2019. https://www.hematologyadvisor.com/home/topics/thrombotic-disorders/comparing-clinical-profile-of-doacs-with-warfarin-in-morbidly-obese-patients/. Accessed 12 Apr 2022.

  8. Eschler CM, Antelo A, Funk G-C, Exadaktylos AK, Lindner G. High fluctuation between anticoagulants, frequent off-label dosing, and no difference concerning outcomes: results of a real-life cohort study. Am J Med. 2021;134(3):e165–70.

    Article  CAS  Google Scholar 

  9. Sugrue A, Sanborn D, Amin M, Farwati M, Sridhar H, Ahmed A, et al. Inappropriate dosing of direct oral anticoagulants in patients with atrial fibrillation. Am J Cardiol. 2021;144:52–9.

    Article  CAS  Google Scholar 

  10. Rymer JA, Webb L, McCall D, Hills MT, Wang TY. Differences in preferences between clinicians and patients for the use and dosing of direct oral anticoagulants for atrial fibrillation. J Am Heart Assoc. 2021;10(11): e020697.

    Article  CAS  Google Scholar 

  11. Steffel J, Collins R, Antz M, Cornu P, Desteghe L, Haeusler KG, et al. 2021 European heart rhythm association practical guide on the use of non-vitamin K antagonist oral anticoagulants in patients with atrial fibrillation. EP Eur. 2021;23:euab065.

    Google Scholar 

  12. White EM, Coons JC. Direct oral anticoagulant use in special populations: elderly, obesity, and renal failure. Curr Cardiol Rep. 2021;23(4):27.

    Article  Google Scholar 

  13. Sarma A, Giugliano RP. Current and developing strategies for monitoring and reversing direct oral anticoagulants in patients with non-valvular atrial fibrillation. Hosp Pract 1995. 2015;43(5):258–67.

    Google Scholar 

  14. Martin KA, Beyer-Westendorf J, Davidson BL, Huisman MV, Sandset PM, Moll S. Use of direct oral anticoagulants in patients with obesity for treatment and prevention of venous thromboembolism: updated communication from the ISTH SSC Subcommittee on Control of Anticoagulation. J Thromb Haemost. 2021;19(8):1874–82.

    Article  Google Scholar 

  15. Pahlmeyer L, Huang J. Monitoring of rivaroxaban levels in patients with class III obesity. Am J Health-Syst Pharm AJHP Off J Am Soc Health-Syst Pharm. 2020;77(13):1013–7.

    Article  Google Scholar 

  16. Ballerie A, Van Nguyen R, Lacut K, Galinat H, Rousseau C, Pontis A, et al. Apixaban and rivaroxaban in obese patients treated for venous thromboembolism: drug levels and clinical outcomes. Thromb Res. 2021;208:39–44.

    Article  CAS  Google Scholar 

  17. Nosáľ V, Petrovičová A, Škorňová I, Bolek T, Dluhá J, Stančiaková L, et al. Plasma levels of direct oral anticoagulants in atrial fibrillation patients at the time of embolic stroke: a pilot prospective multicenter study. Eur J Clin Pharmacol. 2022;78(4):557–64.

    Article  Google Scholar 

  18. McCaughan GJB, Favaloro EJ, Pasalic L, Curnow J. Anticoagulation at the extremes of body weight: choices and dosing. Expert Rev Hematol. 2018;11(10):817–28.

    Article  CAS  Google Scholar 

  19. Kido K, Lee JC, Hellwig T, Gulseth MP. Use of direct oral anticoagulants in morbidly obese patients. Pharmacotherapy J Human Pharmacol Drug Therapy. 2019;40(1):72–8.

    Article  Google Scholar 

  20. Barras M, Legg A. Drug dosing in obese adults. Aust Prescr [Internet]. 2017;40(5):189–93.

    Article  Google Scholar 

  21. Moll S, Crona DJ, Martin K. Direct oral anticoagulants in extremely obese patients: OK to use? Res Pract Thromb Haemost [Internet]. 2018;3(2):152–5. https://doi.org/10.1002/rth2.12178.

    Article  Google Scholar 

  22. Griggs JJ, Mangu PB, Temin S, Lyman GH. Appropriate chemotherapy dosing for obese adult patients with cancer: American Society of Clinical Oncology Clinical Practice Guideline. J Oncol Pract. 2012;8(4):e59-61.

    Article  Google Scholar 

  23. Janmahasatian S, Duffull SB, Ash S, Ward LC, Byrne NM, Green B. Quantification of lean bodyweight. Clin Pharmacokinet. 2005;44(10):1051–65.

    Article  Google Scholar 

  24. Morrish GA, Pai MP, Green B. The effects of obesity on drug pharmacokinetics in humans. Expert Opin Drug Metab Toxicol. 2011;7(6):697–706.

    Article  CAS  Google Scholar 

  25. Jackson LR, Schrader P, Thomas L, Steinberg BA, Blanco R, Allen LA, et al. Dosing of direct oral anticoagulants in patients with moderate chronic kidney disease in US clinical practice: results from the outcomes registry for better informed treatment of AF (ORBIT-AF II). Am J Cardiovasc Drugs Drugs Devices Interv. 2021;21(5):553–61.

    Article  Google Scholar 

  26. Ting C, Rhoten M, Dempsey J, Nichols H, Fanikos J, Ruff CT. Evaluation of direct oral anticoagulant prescribing in patients with moderate to severe renal impairment. Clin Appl Thromb. 2021;27:1076029620987900.

    Article  CAS  Google Scholar 

  27. Shrestha S, Baser O, Kwong WJ. Effect of Renal function on dosing of non-vitamin K antagonist direct oral anticoagulants among patients with nonvalvular atrial fibrillation. Ann Pharmacother. 2018;52(2):147–53.

    Article  CAS  Google Scholar 

  28. Aursulesei V, Costache II. Anticoagulation in chronic kidney disease: from guidelines to clinical practice. Clin Cardiol. 2019;42(8):774–82.

    Article  Google Scholar 

  29. Kcükköylü S, Rump LC. DOAC use in patients with chronic kidney disease. Hamostaseologie. 2017;37(4):286–94.

    Article  Google Scholar 

  30. Lutz J, Jurk K, Schinzel H. Direct oral anticoagulants in patients with chronic kidney disease: patient selection and special considerations. Int J Nephrol Renovasc Dis [Internet]. 2017;10:135–43. https://doi.org/10.2147/IJNRD.S105771.

    Article  CAS  Google Scholar 

  31. Yonezawa Y, Horinaka S, Shirakawa C, Kogure Y. Estimated glomerular filtration ratio is a better index than creatinine clearance (Cockcroft–Gault) for predicting the prevalence of atrial fibrillation in the general Japanese population. Hypertens Res. 2018;41(6):451–9.

    Article  Google Scholar 

  32. Zhou L-Y, Yin W-J, Zhao J, Zhang B-K, Hu C, Liu K, et al. A novel creatinine-based equation to estimate glomerular filtration rate in Chinese population with chronic kidney disease: implications for DOACs dosing in atrial fibrillation patients. Front Pharmacol. 2021;12: 615953.

    Article  CAS  Google Scholar 

  33. Schwartz JB. Potential effect of substituting estimated glomerular filtration rate for estimated creatinine clearance for dosing of direct oral anticoagulants. J Am Geriatr Soc [Internet]. 2016; 64(10):1996–2002. https://escholarship.org/uc/item/2v67f2f3. Accessed 2019 May 12.

  34. Helldén A, Odar-Cederlöf I, Nilsson G, Sjöviker S, Söderström A, von Euler M, et al. Renal function estimations and dose recommendations for dabigatran, gabapentin and valaciclovir: a data simulation study focused on the elderly. BMJ Open. 2013;3(4): e002686.

    Article  Google Scholar 

  35. Kruger PC, Robinson MA, Xu K, Siegal DM, Eikelboom JW, Bhagirath VC. Assessing renal function in patients receiving DOACs: Cockcroft-Gault versus estimated glomerular filtration rate. Thromb Res. 2017;157:165–6.

    Article  CAS  Google Scholar 

  36. Matzke GR, Aronoff GR, Atkinson AJ, Bennett WM, Decker BS, Eckardt K-U, et al. Drug dosing consideration in patients with acute and chronic kidney disease—a clinical update from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int. 2011;80(11):1122–37.

    Article  CAS  Google Scholar 

  37. Pai MP. Estimating the glomerular filtration rate in obese adult patients for drug dosing. Adv Chronic Kidney Dis. 2010;17(5):e53-62.

    Article  Google Scholar 

  38. NHS SPS (Specialist Pharmacy Services). DOACs in renal impairment: practice guide to dosing issues-vs3-Feb 2020 (AW) https://www.sps.nhs.uk/wp-content/uploads/2019/07/DOACs-in-Renal-Impairment-Practice-Guide-to-Dosing-Issues-v3-Feb-2020-AW.pdf.

  39. Michels WM, Grootendorst DC, Verduijn M, Elliott EG, Dekker FW, Krediet RT. Performance of the Cockcroft-Gault, MDRD, and New CKD-EPI formulas in relation to GFR, age, and body size. Clin J Am Soc Nephrol CJASN [Internet]. 2010;5(6):1003–9.

    Article  Google Scholar 

  40. Levey AS, Stevens LA, Schmid CH, Zhang Y, Castro AF, Feldman HI, et al. A new equation to estimate glomerular filtration rate. Ann Internal Med. 2009;150(9):604.

    Article  Google Scholar 

  41. Calsolaro V, Okoye C, Rogani S, Calabrese AM, DellAgnello U, Antognoli R, et al. Different glomerular filtration rate estimating formula for prescribing DOACs in oldest patients: appropriate dosage and bleeding risk Post hoc analysis of a prospective cohort. Aging Clin Exp Res [Internet]. 2021. https://doi.org/10.1007/s40520-021-01986-w.

    Article  Google Scholar 

  42. Parker K, Thachil J. The use of direct oral anticoagulants in chronic kidney disease. Br J Haematol. 2018;183(2):170–84.

    Article  Google Scholar 

  43. Hornum M, Feldt-Rasmussen B. Drug dosing and estimated renal function—any step forward from effersoe? Nephron. 2017;136(4):268–72.

    Article  CAS  Google Scholar 

  44. Viceconti M, Pappalardo F, Rodriguez B, Horner M, Bischoff J, Musuamba TF. In silico trials: verification, validation and uncertainty quantification of predictive models used in the regulatory evaluation of biomedical products. Methods. 2021;185:120–7.

    Article  CAS  Google Scholar 

  45. Tyson RJ, Park CC, Powell JR, Patterson JH, Weiner D, Watkins PB, et al. Precision dosing priority criteria: drug, disease, and patient population variables. Front Pharmacol [Internet]. 2020;11. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85084255688&doi=10.3389%2ffphar.2020.00420&partnerID=40&md5=2b63737b6aa9580b64bb624f279af7bd

  46. Polasek TM, Rostami-Hodjegan A, Yim D-S, Jamei M, Lee H, Kimko H, et al. What does it take to make model-informed precision dosing common practice? Report from the 1st Asian Symposium on Precision Dosing. AAPS J. 2019;21(2):17. https://doi.org/10.1208/s12248-018-0286-6.

    Article  Google Scholar 

  47. Alpaydin E. Introduction to machine learning. Cambridge: The Mit Press; 2014.

    Google Scholar 

  48. (US) Food and Drug Administration (FDA). Guidance for the Use of Bayesian Statistics in Medical Device Clinical Trials. Centre for Biologics Evaluation and Research. Health C for D and R. 2020. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-use-bayesian-statistics-medical-device-clinical-trials. Accessed 12 Apr 2022.

  49. Pauly, O. Random Forests for Medical Applications [PhD Thesis, TECHNISCHE UNIVERSITÄT MÜNCHEN]. 2012. http://mediatum.ub.tum.de/doc/1094727/639902.pdf

  50. Hu C, Steingrimsson JA. Personalized risk prediction in clinical oncology research: applications and practical issues using survival trees and random forests. J Biopharm Stat. 2017;28(2):333–49.

    Article  Google Scholar 

  51. Yu W, Liu T, Valdez R, Gwinn M, Khoury MJ. Application of support vector machine modeling for prediction of common diseases: the case of diabetes and pre-diabetes. BMC Med Inform Decis Mak [Internet]. 2010;10:16.

    Article  Google Scholar 

  52. Son Y-J, Kim H-G, Kim E-H, Choi S, Lee S-K. Application of support vector machine for prediction of medication adherence in heart failure patients. Healthc Inform Res [Internet]. 2010;16(4):253–9.

    Article  Google Scholar 

  53. Liu R, Li X, Zhang W, Zhou H-H. Comparison of nine statistical model-based warfarin pharmacogenetic dosing algorithms using the racially diverse international warfarin pharmacogenetic consortium cohort database. PLoS ONE [Internet]. 2015;10(8). https://www.scopus.com/inward/record.uri?eid=2-s2.0-84942900632&doi=10.1371%2fjournal.pone.0135784&partnerID=40&md5=05d125451ad6ee5a988315be173509d5

  54. Bica I, Alaa AM, Lambert C, van der Schaar M. From real-world patient data to individualized treatment effects using machine learning: current and future methods to address underlying challenges. Clin Pharmacol Ther. 2021;109(1):87–100.

    Article  Google Scholar 

  55. Battineni G, Chintalapudi N, Amenta F. Machine learning in medicine: performance calculation of dementia prediction by support vector machines (SVM). Inform Med Unlocked. 2019;16: 100200.

    Article  Google Scholar 

  56. Rahman R, Dhruba SR, Ghosh S, Pal R. Functional random forest with applications in dose-response predictions. Sci Rep. 2019;9(1):1628.

  57. Huang S, Cai N, Pacheco PP, Narrandes S, Wang Y, Xu W. Applications of support vector machine (SVM) learning in cancer genomics. Cancer Genom Proteom. 2018;15(1):41–51.

    CAS  Google Scholar 

  58. nQuery Software Team. A Brief Overview of Bayesian Analysis for Biostatisticians. nQuery. 2018. https://blog.statsols.com/a-brief-overview-of-bayesian-analysis-for-biostatisticians

  59. Roychoudhury S. Shaping the Future of Drug Development Practical Model-based Approaches for Phase I Oncology Trial Introduction to Complex Innovative Trial Design Webinar Series [Internet]. 2020. https://www.cytel.com/hubfs/2020%20Webinars/CID%20Series%202020/Introduction%20to%20CID%20Webinar%20Series_PhaseIOnco_Final3.pdf. Accessed 12 Apr 2022.

  60. Bhattacharjee A. Application of Bayesian approach in cancer clinical trial. World J Oncol. 2014;5(3):109–12. https://doi.org/10.14740/wjon842e.

    Article  Google Scholar 

  61. Linden A, Yarnold PR, Nallamothu BK. Using machine learning to model dose–response relationships. J Eval Clin Pract. 2016;22(6):856–63.

    Article  Google Scholar 

  62. Sharabiani A, Bress A, Douzali E, Darabi H. Revisiting Warfarin dosing using machine learning techniques. Comput Math Methods Med. 2015;2015: 560108.

    Article  Google Scholar 

  63. Sharabiani A, Bress A, Galanter W, Nazempour R, Darabi H. A computer-aided system for determining the application range of a warfarin clinical dosing algorithm using support vector machines with a polynomial kernel function. In: IEEE international conference on automation science and engineering [Internet]. 2019. p. 418–23. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85072968500&doi=10.1109%2fCOASE.2019.8842932&partnerID=40&md5=26fb4b61603ecb378e7d7710cf6e2591

  64. Labovitz DL, Shafner L, Gil MR, Virmani D, Hanina A. Using artificial intelligence to reduce the risk of nonadherence in patients on anticoagulation therapy. Stroke [Internet]. 2017;48(5):1416–9.

    Article  Google Scholar 

  65. Standing JF. Understanding and applying pharmacometric modelling and simulation in clinical practice and research. Br J Clin Pharmacol. 2017;83(2):247–54.

    Article  Google Scholar 

  66. Jha VK, Jairam A, Mahapatra D. Newer oral anticoagulant in chronic kidney disease: what we should know. J Assoc Physicians India. 2019;67:60–5.

    Google Scholar 

  67. Speed V, Green B, Roberts LN, Woolcombe S, Bartoli-Abdou J, Barsam S, et al. Fixed dose rivaroxaban can be used in extremes of bodyweight: a population pharmacokinetic analysis. J Thromb Haemost JTH. 2020;18(9):2296–307.

    Article  CAS  Google Scholar 

  68. Willmann S, Zhang L, Frede M, Kubitza D, Mueck W, Schmidt S, et al. Integrated population pharmacokinetic analysis of rivaroxaban across multiple patient populations. CPT Pharmacomet Syst Pharmacol. 2018;7(5):309–20.

    Article  CAS  Google Scholar 

  69. Mueck W, Stampfuss J, Kubitza D, Becka M. Clinical pharmacokinetic and pharmacodynamic profile of rivaroxaban. Clin Pharmacokinet [Internet]. 2013;53(1):1–16.

    Google Scholar 

  70. Kubitza D, Becka M, Zuehlsdorf M, Mueck W. Body weight has limited influence on the safety, tolerability, pharmacokinetics, or pharmacodynamics of rivaroxaban (BAY 59–7939) in healthy subjects. J Clin Pharmacol. 2007;47(2):218–26.

    Article  CAS  Google Scholar 

  71. Buller HR, Lensing AWA, Prins MH, Agnelli G, Cohen A, Gallus AS, et al. A dose-ranging study evaluating once-daily oral administration of the factor Xa inhibitor rivaroxaban in the treatment of patients with acute symptomatic deep vein thrombosis: the Einstein–DVT Dose-Ranging Study. Blood. 2008;112(6):2242–7.

    Article  CAS  Google Scholar 

  72. Xu R, Ge W, Jiang Q. Application of physiologically based pharmacokinetic modeling to the prediction of drug-drug and drug-disease interactions for rivaroxaban. Eur J Clin Pharmacol. 2018;74(6):755–65.

    Article  CAS  Google Scholar 

  73. Hartmanshenn C, Scherholz M, Androulakis IP. Physiologically-based pharmacokinetic models: approaches for enabling personalized medicine. J Pharmacokinet Pharmacodyn. 2016;43(5):481–504.

    Article  CAS  Google Scholar 

  74. Niebecker R, Jönsson S, Karlsson MO, Miller R, Nyberg J, Krekels EHJ, et al. Population pharmacokinetics of edoxaban in patients with symptomatic deep-vein thrombosis and/or pulmonary embolism–the Hokusai-VTE phase 3 study. Br J Clin Pharmacol. 2015;80(6):1374–87.

    Article  CAS  Google Scholar 

  75. Yin OQP, Tetsuya K, Miller R. Edoxaban population pharmacokinetics and exposure-response analysis in patients with non-valvular atrial fibrillation. Eur J Clin Pharmacol. 2014;70(11):1339–51.

    Article  CAS  Google Scholar 

  76. Xu XS, Moore K, Burton P, Stuyckens K, Mueck W, Rossenu S, et al. Population pharmacokinetics and pharmacodynamics of rivaroxaban in patients with acute coronary syndromes. Br J Clin Pharmacol. 2012;74(1):86–97.

    Article  CAS  Google Scholar 

  77. Rosenbaum S. Basic pharmacokinetics and pharmacodynamics: an integrated textbook and computer simulations. Hoboken: Wiley; 2017.

    Google Scholar 

  78. Barr D, Epps QJ. Direct oral anticoagulants: a review of common medication errors. J Thromb Thrombolysis. 2019;47(1):146–54.

    Article  Google Scholar 

  79. Farhan N, Cristofoletti R, Basu S, Kim S, Lingineni K, Jiang S, et al. Physiologically based pharmacokinetics modeling to investigate formulation factors influencing the generic substitution of dabigatran etexilate. CPT Pharmacomet Syst Pharmacol [Internet]. 2021. https://doi.org/10.1002/psp4.12589.

    Article  Google Scholar 

  80. Toorop MMA, Lijfering WM, Scheres LJJ. The relationship between DOAC levels and clinical outcomes: the measures tell the tale. J Thromb Haemost JTH. 2020;18(12):3163–8.

    Article  Google Scholar 

  81. Ferrat E, Fabre J, Galletout P, Boutin E, Le Breton J, Renard V, et al. Inappropriate direct oral anticoagulant prescriptions in patients with non-valvular atrial fibrillation: cross-sectional analysis of the French CACAO cohort study in primary care. Br J Gen Pract J R Coll Gen Pract. 2021;71(703):e134–9.

    Article  Google Scholar 

  82. Khalil F, Läer S. Physiologically based pharmacokinetic modeling: methodology, applications, and limitations with a focus on its role in pediatric drug development. J Biomed Biotechnol [Internet]. 2011;2011:1–13.

    Article  Google Scholar 

  83. Niederer SA, Aboelkassem Y, Cantwell CD, Corrado C, Coveney S, Cherry EM, et al. Creation and application of virtual patient cohorts of heart models. Philos Trans A Math Phys Eng Sci. 2020;378(2173):20190558.

    CAS  Google Scholar 

  84. Madden J, Enoch S, Paini A, Cronin M. A review of in silico tools as alternatives to animal testing: principles, resources and applications. Altern Lab Anim. 2020;48(4):146–72.

    Article  Google Scholar 

  85. Nakamura M, Yamada N, Ito M. Direct oral anticoagulants for the treatment of venous thromboembolism in Japan. J Atheroscler Thromb. 2017;24(6):560–5. https://doi.org/10.5551/jat.RV17005.

    Article  CAS  Google Scholar 

  86. Altay O, Ulas M, Ozer M, Genc E (2019) An expert system to predict warfarin dosage in turkish patients depending on genetic and non-genetic factors. In: 2019 7th international symposium on digital forensics and security (ISDFS). https://doi.org/10.1109/isdfs.2019.8757526

  87. Yildirim E, Erol K, Birdane A. Warfarin dose requirement in Turkish patients: the influences of patient characteristics and polymorphisms in CYP2C9, VKORC1 and factor VII. Hippokratia. 2014;18(4):319–27.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Shahzad Hasan.

Ethics declarations

Funding

No external funding was used in the preparation of this manuscript.

Conflict of interest

Ezekwesiri Michael Nwanosike, Wendy Sunter, Hamid A. Merchant, Barbara R. Conway, Muhammad Ayub Ansari, and Syed Shahzad Hasan declare that they have no potential conflicts.

Availability of data and material

Data sharing does not apply to this article as no datasets were generated or analysed during the current study.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Code availability

Not applicable.

Author contributions

EMN: conceptualisation, investigation, methodology, project administration, resources, validation, visualisation, and writing the first draft; WS: supervision, validation, reviewing, and editing; HAM: supervision, validation, reviewing, and editing; BRC: supervision, validation, reviewing, and editing; MAA: validation, reviewing, and editing; SSH: conceptualisation, investigation, methodology, project administration, supervision, validation, visualisation, reviewing, and editing.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nwanosike, E.M., Sunter, W., Merchant, H.A. et al. Challenges and Possible Solutions to Direct-Acting Oral Anticoagulants (DOACs) Dosing in Patients with Extreme Bodyweight and Renal Impairment. Am J Cardiovasc Drugs 23, 9–17 (2023). https://doi.org/10.1007/s40256-022-00560-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40256-022-00560-7

Navigation