Skip to main content
Log in

Electrocatalytic Performance of Carbon Layer and Spherical Carbon/Carbon Cloth Composites Towards Hydrogen Evolution from the Direct Electrolysis of Bunsen Reaction Product

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

A composite material comprising a carbon layer and spherical carbon/carbon cloth (C-SC/CC) was fabricated using a hydrothermal-pyrolysis method, employing carbon cloth as the substrate and glucose as the carbon source. The C-SC/CC electrode was evaluated as an electrocatalytic electrode for hydrogen production by electrolysis of Bunsen reaction products. The electrode prepared with 4 g of glucose and annealed at 800 °C showed excellent electrocatalytic activity. It requires only a potential of 185 mV (vs. SCE) to achieve a current density of 10 mA/cm2. Furthermore, the electrode demonstrated good stability with a 6% loss in current density after 1000 cycles of scanning from 0.2 V to 1.2 V. These results indicate the potential of the SC/CC electrode as an efficient and durable electrocatalyst for the electrolysis of H2SO4 and HI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Suman S., Rajak D. K., Kumar G., Kumar B., Jibran J. A.; Eds.: Pathak P., Srivastava R. R., Ilyas S., Anthropogenic Environmental Hazards: Compensation and Mitigation, Spring, Cham, 2023

    Google Scholar 

  2. Hou H., Lu W., Liu B., Hassanein Z., Mahmood H., Khalid S., Sustainability, 2023, 15, 2048

    Article  Google Scholar 

  3. Hassan Q., Abdulateef A. M., Hafedh S. A., Al-samari A., Abdulateef J., Sameen A. Z., Salman H. M., Al-Jiboory A. K., Wieteska S., Jaszczur M., Int. J. Hydrogen Energ., 2023, 48, 17383

    Article  CAS  Google Scholar 

  4. Li X., Raorane C. J., Xia C., Wu Y., Tran T. K. N., Khademi T., Fuel, 2023, 334, 126684

    Article  CAS  Google Scholar 

  5. Klöckner K., Letmathe P., Appl. Energ., 2020, 279, 115779

    Article  Google Scholar 

  6. Longden T., Beck F. J., Jotzo F., Andrews R., Prasad M., Appl. Energ., 2022, 306, 118145

    Article  CAS  Google Scholar 

  7. Norman J., Mysels K., Sharp R., Williamson D., Int. J. Hydrogen Energ., 1982, 7, 545

    Article  CAS  Google Scholar 

  8. Nnabuife S. G., Ugbeh-Johnson J., Okeke N. E., Ogbonnaya C., Carbon Capture Sci. Technol., 2022, 3, 100042

    Article  CAS  Google Scholar 

  9. Ozcan H., El-Emam R. S., Horri B. A., J Clean. Prod., 2022, 382, 135295

    Article  Google Scholar 

  10. Kasahara S., Iwatsuki J., Takegami H., Tanaka N., Noguchi H., Kamiji Y., Onuki K., Kubo S., Int. J. Hydrogen Energ., 2017, 42, 13477

    Article  CAS  Google Scholar 

  11. Wang H., Le Person A., Zhao X., Li J., Nuncio P., Yang L., Moniri A., Chuang K. T., Fuel Process. Technol., 2013, 108, 55

    Article  CAS  Google Scholar 

  12. Zhang K., Li X., Chang L., Bao W., Wang H., Int. J. Hydrogen Energ., 2022, 47, 21923

    Article  CAS  Google Scholar 

  13. Kim H. S., Kim Y. H., Ahn B. T., Lee J. G., Park C. S., Bae K. K., Int. J. Hydrogen Energ., 2014, 39, 692

    Article  CAS  Google Scholar 

  14. Yoon H. J., No H. C., Lee J., Choi J. Y., Pyon C. U., Int. J. Hydrogen Energ., 2015, 40, 15792

    Article  CAS  Google Scholar 

  15. Zhang P., Chen S., Wang L., Xu J., Int. J. Hydrogen Energ., 2010, 35, 2883

    Article  CAS  Google Scholar 

  16. Zhu Q., Zhang Y., Zhou C., Wang Z., Zhou J., Cen K., Int. J. Hydrogen Energ., 2012, 37, 6407

    Article  CAS  Google Scholar 

  17. Li J., Moniri A., Wang H., Int. J. Hydrogen Energ., 2015, 40, 2912

    Article  CAS  Google Scholar 

  18. Zhang K., Zhao X., Chen S., Chang L., Wang J., Bao W., Wang H., Int. J. Hydrogen Energ., 2018, 43, 13702

    Article  CAS  Google Scholar 

  19. Murthy A. P., Madhavan J., Murugan K., J. Power Sources, 2018, 398, 9

    Article  CAS  Google Scholar 

  20. Zhang Z., Wang H., Li Y., Xie M., Li C., Lu H., Peng Y., Shi Z., Chem. Res. Chinese Universities, 2022, 38(3), 750

    Article  Google Scholar 

  21. Luan X., Xue Y., Chem. Res. Chinese Universities, 2021, 37(6), 1268

    Article  CAS  Google Scholar 

  22. Lei C., Li W., Wang G., Zhuang L., Lu J., Xiao L., Chem. Res. Chinese Universities, 2021, 37(2), 293

    Article  CAS  Google Scholar 

  23. Balaji D., Madhavan J., AlSalhi M. S., Aljaafreh M. J., Prasad S., Show P. L., Int. J. Hydrogen Energ., 2021, 46, 30739

    Article  CAS  Google Scholar 

  24. Balint L. C., Hulka I., Kellenberger A., Materials, 2021, 15, 73

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wang X., Ma R.-J., Guo T., Zhang X., Wang H., Zhao X., J. Mater. Sci., 2023, 58, 15035

    Article  CAS  Google Scholar 

  26. Adam D. B., Tsai M.-C., Awoke Y. A., Huang W.-H., Yang Y.-W., Pao C.-W., Su W.-N., Hwang B. J., ACS Sustainable Chem. Eng., 2021, 9, 8803

    Article  CAS  Google Scholar 

  27. Peng S.-M., Patil S. B., Chang C.-C., Chang S.-T., Chen Y.-C., Wu K.-C., Su W.-N., Hwang B. J., Wang D.-Y., J. Mater. Chem. A, 2022, 10, 23982

    Article  CAS  Google Scholar 

  28. Dessie T. A., Huang W.-H., Adam D. B., Awoke Y. A., Wang C.-H., Chen J.-L., Pao C.-W., Habtu N. G., Tsai M.-C., Su W.-N., Nano Lett., 2022, 22, 7311

    Article  PubMed  CAS  Google Scholar 

  29. Adam D. B., Tsai M.-C., Awoke Y. A., Huang W.-H., Lin C.-H., Alamirew T., Ayele A. A., Yang Y.-W., Pao C.-W., Su W.-N., Appl. Catal. B-Environ., 2022, 316, 121608

    Article  CAS  Google Scholar 

  30. Hu E., Yao Y., Chen Y., Cui Y., Wang Z., Qian G., Nanoscale Adv., 2021, 3, 604

    Article  PubMed  CAS  Google Scholar 

  31. Zeng L., Li X., Fan S., Li J., Mu J., Qin M., Wang L., Gan G., Tadé M., Liu S., Nanoscale, 2019, 11, 4428

    Article  PubMed  CAS  Google Scholar 

  32. Cai H., Xiong L., Wang B., Zhu D., Hao H., Yu X., Li C., Yang S., Chem. Eng. J., 2022, 430, 132824

    Article  CAS  Google Scholar 

  33. Yuwen T., Zou H., Xu S., Wu C., Peng Q., Shu D., Yang X., Wang Y., Yu C., Fan J., Materials Today Chemistry, 2023, 29, 101388

    Article  CAS  Google Scholar 

  34. Liu Y.-N., Zhang J.-N., Wang H.-T., Kang X.-H., Bian S.-W., Mater. Chem. Front., 2019, 3, 25

    Article  CAS  Google Scholar 

  35. Wang K., Xu M., Gu Y., Gu Z., Fan Q. H., J. Power Sources, 2016, 332, 180

    Article  CAS  Google Scholar 

  36. Vidano R., Fischbach D., Willis L., Loehr T., Solid State Commun., 1981, 39, 341

    Article  CAS  Google Scholar 

  37. da Silva Souza D. R., de Mesquita J. P., Lago R. M., Caminhas L. D., Pereira F. V., Ind. Crop. Prod., 2016, 93, 121

    Article  Google Scholar 

  38. White R. J., Budarin V., Luque R., Clark J. H., Macquarrie D. J., Chem. Soc. Rev., 2009, 38, 3401

    Article  PubMed  CAS  Google Scholar 

  39. Saleh T. A., Appl. Surf. Sci., 2011, 257, 7746

    Article  CAS  Google Scholar 

  40. Charoensook K., Huang C. L., Tai H. C., Lanjapalli V. V. K., Chiang L. M., Hosseini S., Lin Y. T., Li Y. Y., J. Taiwan. Inst. Chem. E., 2021, 120, 246

    Article  CAS  Google Scholar 

  41. Pitchai C., Edison T. N. J. I., Sethuraman M. G., Int. J. Hydrogen Energ., 2020, 45, 28800

    Article  Google Scholar 

  42. Sun X., Li Y., Angew. Chem. Int. Ed., 2004, 43, 597

    Article  Google Scholar 

  43. Sevilla M., Fuertes A. B., Chem-Eur. J., 2009, 15, 4195

    Article  PubMed  CAS  Google Scholar 

  44. Xu H., Liu Y., Liang H., Gao C., Yang S., Sci. Total Environ., 2021, 759, 143457

    Article  PubMed  CAS  Google Scholar 

  45. Qi Y., Zhang M., Qi L., Qi Y., Rsc Advances, 2016, 6, 20814

    Article  CAS  Google Scholar 

  46. Sravan J. S., Raunija T. S. K., Verma A., Mohan S. V., Fuel, 2021, 285, 119273

    Article  Google Scholar 

  47. Zhang L., Wang Q., Xu F., Wang Z., J. Anal. Appl. Pyrolysis, 2023, 175, 106211

    Article  CAS  Google Scholar 

  48. Zhang W., Li C., Ji J.-Y., Niu Z., Gu H., Abrahams B. F., Lang J.-P., Chem. Eng. J., 2023, 461, 141937

    Article  CAS  Google Scholar 

  49. Hsu Y. K., Chen Y. C., Lin Y. G., Chen L. C., Chen K. H., J. Mater. Chem., 2012, 22, 3383

    Article  CAS  Google Scholar 

  50. Ischia G., Cutillo M., Guella G., Bazzanella N., Cazzanelli M., Orlandi M., Miotello A., Fiori L., Chem. Eng. J., 2022, 449, 137827

    Article  CAS  Google Scholar 

  51. Jia Y., Zhang L., Du A., Gao G., Chen J., Yan X., Brown C. L., Yao X., Adv. Mater., 2016, 28, 9532

    Article  PubMed  CAS  Google Scholar 

  52. Liu Z., Zhao Z., Wang Y., Dou S., Yan D., Liu D., Xia Z., Wang S., Adv. Mater., 2017, 29, 1606207

    Article  Google Scholar 

  53. Jiang H., Gu J., Zheng X., Liu M., Qiu X., Wang L., Li W., Chen Z., Ji X., Li J., Energy Environ. Sci., 2019, 12, 322

    Article  CAS  Google Scholar 

  54. Zhang X., Shen W., Li Z., Wang D., Qi J., Liang C., Carbon, 2020, 167, 548

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Science and Technology Development Projects of Jilin Province, China (Nos. 20220203027SF, 20170414025GH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Zhao.

Ethics declarations

The authors declare no conflicts of interest.

Supporting Information

40242_2023_3223_MOESM1_ESM.pdf

Electrocatalytic performance of carbon layer and spherical carbon/carbon cloth composites towards hydrogen evolution from the direct electrolysis of Bunsen reaction product

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Guo, T., Liu, Y. et al. Electrocatalytic Performance of Carbon Layer and Spherical Carbon/Carbon Cloth Composites Towards Hydrogen Evolution from the Direct Electrolysis of Bunsen Reaction Product. Chem. Res. Chin. Univ. 40, 109–118 (2024). https://doi.org/10.1007/s40242-023-3223-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-023-3223-x

Keywords

Navigation