Skip to main content
Log in

S-TiO2/Ti as efficient and stable electrocatalysts electrode for decomposition of HI to produce hydrogen

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The hydrogen iodide decomposition reaction of the sulfur-iodine (SI) cycle is realized by electrolysis at room temperature to achieve efficient hydrogen production, while iodine is recycled throughout the SI reaction. In this work, we report a facile hydrothermal method for the synthesis of sulfur-doped titanium dioxide (S-\(\hbox {TiO}_2\)) nanosheets with evenly distributed on the Ti foil (S-\(\hbox {TiO}_2\)/Ti). The noble metal-free S-\(\hbox {TiO}_2\)/Ti electrode demonstrates excellent electrochemical catalytic performance for iodine evolution reaction. It can deliver a high current density of 100 mA/\(\hbox {cm}^2\) with a potential of 1.05 V, which is close to 90% of that of precious metal platinum and 5.6 times of bare Ti foil. Furthermore, the S-\(\hbox {TiO}_2\)/Ti electrode is stable in a mixed acid solution of HI and \(\hbox {H}_2\hbox {SO}_4\). Compared to \(\hbox {TiO}_2\)/Ti, diffuse reflectance spectroscopy and ultraviolet photoelectron spectroscopy analysis evidence a reduction in the band gap and work function of S-\(\hbox {TiO}_2\)/Ti due to the doping of sulfur. Correspondingly, the current efficiency approaches to 100% under the electrolysis constant voltage 1.30 V. Eventually, the detailed mechanism to describe the improvement of the electrocatalytic performance was suggested.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data availability

Measured data available upon request.

References

  1. Monga D, Shetti NP, Basu S, Kakarla RR (2023) Recent advances in various processes for clean and sustainable hydrogen production. Nano-Struct & Nano-Objects 33:100948. https://doi.org/10.1016/j.nanoso.2023.100948

    Article  CAS  Google Scholar 

  2. Kumar RS, Ramakrishnan S, Prabhakaran S, Kim AR, Kumar DR, Kim DH, Yoo DJ (2022) Structural, electronic, and electrocatalytic evaluation of spinel transition metal sulfide supported reduced graphene oxide. J Mater Chem A 10(4):1999–2011. https://doi.org/10.1039/D1TA08224H

    Article  Google Scholar 

  3. Karthikeyan S, Santhosh Kumar R, Ramakrishnan S, Prabhakaran S, Kim AR, Kim DH, Yoo DJ (2022) Efficient alkaline water/seawater electrolysis by development of ultra-low \({\text{ IrO}_{2}}\) nanoparticles decorated on hierarchical \({\text{ MnO}_{2}}\)/RGO nanostructure. ACS Sustain Chem Eng 10(46):15068–15081. https://doi.org/10.1021/acssuschemeng.2c04074

    Article  CAS  Google Scholar 

  4. Lee JE, Shafiq I, Hussain M, Lam SS, Rhee GH, Park Y-K (2022) A review on integrated thermochemical hydrogen production from water. Int J Hydrogen Energy 47(7):4346–4356. https://doi.org/10.1016/j.ijhydene.2021.11.065

    Article  CAS  Google Scholar 

  5. O’keefe D, Allen C, Besenbruch G, Brown L, Norman J, Sharp R, McCorkle K (1982) Preliminary results from bench-scale testing of a sulfur-iodine thermochemical water-splitting cycle. Int J Hydrogen Energy 7(5):381–392. https://doi.org/10.1016/0360-3199(82)90048-9

    Article  Google Scholar 

  6. Nomura M, Fujiwara S, Ikenoya K, Kasahara S, Nakajima H, Kubo S, Hwang G-J, Choi H-S, Onuki K (2004) Application of an electrochemical membrane reactor to the thermochemical water splitting is process for hydrogen production. J Membr Sci 240(1–2):221–226. https://doi.org/10.1016/j.memsci.2004.03.046

    Article  CAS  Google Scholar 

  7. Liu H, Ye H, Zhou Z, Dong H (2023) A comprehensive evaluation integrating thermodynamics and mechanism kinetics for the Bunsen reaction in a sustainable iodine-sulfur cycle. Int J Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2023.06.131

    Article  Google Scholar 

  8. Wang H (2007) Hydrogen production from a chemical cycle of \({\text{ H}_{2}\text{ S }}\) splitting. Int J Hydrogen Energy 32(16):3907–3914. https://doi.org/10.1016/j.ijhydene.2007.05.030

    Article  CAS  Google Scholar 

  9. Wang H, Le Person A, Zhao X, Li J, Nuncio P, Yang L, Moniri A, Chuang KT (2013) A low-temperature hydrogen production process based on \({\text{H}_{2}\text{S}}\) splitting cycle for sustainable oil sands bitumen upgrading. Fuel Process Technol 108:55–62. https://doi.org/10.1016/j.fuproc.2012.04.010

    Article  CAS  Google Scholar 

  10. Li J, Moniri A, Wang H (2015) Apparent kinetics of a gas–liquid–liquid system of Bunsen reaction with iodine-toluene solution for hydrogen production through \({\text{H}_{2}\text{S}}\) splitting cycle. Int J Hydrogen Energy 40(7):2912–2920. https://doi.org/10.1016/j.ijhydene.2014.12.073

    Article  CAS  Google Scholar 

  11. Ying Z, Zheng X, Zhang Y, Cui G (2017) Development of a novel flowsheet for sulfur-iodine cycle based on the electrochemical Bunsen reaction for hydrogen production. Int J Hydrogen Energy 42(43):26586–26596. https://doi.org/10.1016/j.ijhydene.2017.09.035

    Article  CAS  Google Scholar 

  12. Nomura M, Nakao S-I, Okuda H, Fujiwara S, Kasahara S, Ikenoya K, Kubo S, Onuki K (2004) Development of an electrochemical cell for efficient hydrogen production through the is process. AIChE J 50(8):1991–1998. https://doi.org/10.1002/aic.10162

    Article  CAS  Google Scholar 

  13. Zhang K, Zhao X, Chen S, Chang L, Wang J, Bao W, Wang H (2018) Direct electrolysis of Bunsen reaction product \({\text{ HI }}/{\text{H}_{2}\text{SO}_{4}}/{\text{ H}_{2}\text{ O }}\)/toluene mixture for hydrogen production: Pt electrode characterization. Int J Hydrogen Energy 43(30):13702–13710. https://doi.org/10.1016/j.ijhydene.2018.02.079

    Article  CAS  Google Scholar 

  14. Wu Z, Yang P, Li Q, Xiao W, Li Z, Xu G, Liu F, Jia B, Ma T, Feng S et al (2023) Microwave synthesis of Pt clusters on black \({\text{ TiO}_{2}}\) with abundant oxygen vacancies for efficient acidic electrocatalytic hydrogen evolution. Angew Chem 135(14):202300406. https://doi.org/10.1002/ange.202300406

    Article  Google Scholar 

  15. Zhang J, Lei Y, Cao S, Hu W, Piao L, Chen X (2022) Photocatalytic hydrogen production from seawater under full solar spectrum without sacrificial reagents using \({\text{ TiO}_{2}}\) nanoparticles. Nano Res 15(3):2013–2022. https://doi.org/10.1007/s12274-021-3982-y

    Article  CAS  Google Scholar 

  16. Alasri TM, Ali SL, Salama RS, Alshorifi FT (2023) Band-structure engineering of \({\text{ TiO}_{2}}\) photocatalyst by AuSe quantum dots for efficient degradation of malachite green and phenol. J Inorg Organomet Polymers Mater. https://doi.org/10.1007/s10904-023-02604-0

    Article  Google Scholar 

  17. Zarach Z, Nowak AP, Trzciński K, Gajowiec G, Trykowski G, Sawczak M, Łapiński M, Szkoda M (2023) Influence of hydrochloric acid concentration and type of nitrogen source on the electrochemical performance of \({\text{ TiO}_{2}}/{\text{N-MoS}}_{2}\) for energy storage applications. Appl Surf Sci 608:155187. https://doi.org/10.1016/j.apsusc.2022.155187

    Article  CAS  Google Scholar 

  18. González-Juárez E, Guzmán-Torres J, García-Gutiérrez D, García-Gutiérrez D, Pineda-Aguilar N, Garza-Tovar L, Sánchez-Cervantes E (2023) Effect of thermal treatment on the electrochemical performance of \({\text{ TiO}_{2}}\)(B)/anatase cathodes for \({\text{ Li}^{+}}/{\text{ Mg}^{2+}}\) batteries. J Mater Sci 58(9):4082–4093. https://doi.org/10.1007/s10853-023-08276-y

    Article  CAS  Google Scholar 

  19. Hong S, Lee W, Hwang YJ, Song S, Choi S, Rhu H, Shim JH, Kim A (2023) Role of defect density in the \(\text{ TiO}_{\text{ x }}\) protective layer of the n-Si photoanode for efficient photoelectrochemical water splitting. J Mater Chem A 11(8):3987–3999. https://doi.org/10.1039/D2TA07082K

    Article  CAS  Google Scholar 

  20. Umebayashi T, Yamaki T, Itoh H, Asai K (2002) Band gap narrowing of titanium dioxide by sulfur doping. Appl Phys Lett 81(3):454–456. https://doi.org/10.1063/1.1493647

    Article  CAS  Google Scholar 

  21. Hwang G-J, Onuki K, Nomura M, Kasahara S, Kim J-W (2003) Improvement of the thermochemical water-splitting IS (iodine-sulfur) process by electro-electrodialysis. J Membr Sci 220(1–2):129–136. https://doi.org/10.1016/s0376-7388(03)00224-2

    Article  CAS  Google Scholar 

  22. Yang T-S, Yang M-C, Shiu C-B, Chang W-K, Wong M-S (2006) Effect of \(\text{ N}_{2}\) ion flux on the photocatalysis of nitrogen-doped titanium oxide films by electron-beam evaporation. Appl Surf Sci 252(10):3729–3736. https://doi.org/10.1016/j.apsusc.2005.05.070

    Article  CAS  Google Scholar 

  23. Chu D, Younis A, Li S (2012) Direct growth of \({\text{ TiO}_{2}}\) nanotubes on transparent substrates and their resistive switching characteristics. J Phys D Appl Phys 45(35):355306. https://doi.org/10.1088/0022-3727/45/35/355306

    Article  CAS  Google Scholar 

  24. Bakar SA, Ribeiro C (2016) A comparative run for visible-light-driven photocatalytic activity of anionic and cationic S-doped \({\text{ TiO}_{2}}\) photocatalysts: a case study of possible sulfur doping through chemical protocol. J Mol Catal A Chem 421:1–15. https://doi.org/10.1016/j.molcata.2016.05.003

    Article  CAS  Google Scholar 

  25. Elayappan V, Shanmugam R, Chinnusamy S, Yoo DJ, Mayakrishnan G, Kim K, Noh HS, Kim MK, Lee H (2020) Three-dimensional bimetal TMO supported carbon based electrocatalyst developed via dry synthesis for hydrogen and oxygen evolution. Appl Surf Sci 505:144642. https://doi.org/10.1016/j.apsusc.2019.144642

    Article  CAS  Google Scholar 

  26. Ni J, Fu S, Wu C, Maier J, Yu Y, Li L (2016) Self-supported nanotube arrays of sulfur-doped \({\text{ TiO}_{2}}\) enabling ultrastable and robust sodium storage. Adv Mater 28(11):2259–2265. https://doi.org/10.1002/adma.201504412

    Article  CAS  Google Scholar 

  27. Erdem B, Hunsicker RA, Simmons GW, Sudol ED, Dimonie VL, El-Aasser MS (2001) XPS and FTIR surface characterization of \({\text{ TiO}_{2}}\) particles used in polymer encapsulation. Langmuir 17(9):2664–2669. https://doi.org/10.1021/la0015213

    Article  CAS  Google Scholar 

  28. Bhowmick S, Saini C, Santra B, Walczak L, Semisalova A, Gupta M, Kanjilal A (2023) Modulation of the work function of \({\text{ TiO}_{2}}\) nanotubes by nitrogen doping: Implications for the photocatalytic degradation of dyes. ACS Appl Nano Mater 6(1):50–60. https://doi.org/10.1021/acsanm.2c03587

    Article  CAS  Google Scholar 

  29. Ohno T, Akiyoshi M, Umebayashi T, Asai K, Mitsui T, Matsumura M (2004) Preparation of S-doped \({\text{ TiO}_{2}}\) photocatalysts and their photocatalytic activities under visible light. Appl Catal A 265(1):115–121. https://doi.org/10.1016/j.apcata.2004.01.007

    Article  CAS  Google Scholar 

  30. Poudel MB, Logeshwaran N, Kim AR, Karthikeyan S, Vijayapradeep S, Yoo DJ (2023) Integrated core-shell assembly of \({\text{ Ni}_{3}\text{S}_{2}}\) nanowires and CoMoP nanosheets as highly efficient bifunctional electrocatalysts for overall water splitting. J Alloys Compd. https://doi.org/10.1016/j.jallcom.2023.170678

    Article  Google Scholar 

  31. Etghani SA, Ansari E, Mohajerzadeh S (2019) Evolution of large area \({\text{TiS}_{2}}-{\text{TiO}_{2}}\) heterostructures and S-doped \({\text{TiO}_{2}}\) nano-sheets on titanium foils. Sci Rep 9(1):17943. https://doi.org/10.1038/s41598-019-53651-y

    Article  CAS  Google Scholar 

  32. Mukri BD, Waghmare UV, Hegde M (2013) Platinum ion-doped TiO2: high catalytic activity of \({\text{Pt}^{2+}}\) with oxide ion vacancy in \(\text{Ti}^{4+}_{1-\text{x}}\text{Pt}^{2+}_{\text{x}}\text{O}_{2-\text{x}}\) compared to \({\text{Pt}^{4+}}\) without oxide ion vacancy in \(\text{Ti}^{4+}_{1-\text{x}}\text{Pt}^{4+}_{\text{x}}\text{O}_{2}\). Chem Mater 25(19):3822–3833. https://doi.org/10.1021/cm4015404

    Article  CAS  Google Scholar 

  33. Yang C, Wang Z, Lin T, Yin H, Lü X, Wan D, Xu T, Zheng C, Lin J, Huang F et al (2013) Core-shell nanostructured “black” rutile titania as excellent catalyst for hydrogen production enhanced by sulfur doping. J Am Chem Soc 135(47):17831–17838. https://doi.org/10.1021/ja4076748

    Article  CAS  Google Scholar 

  34. Bacsa R, Kiwi J, Ohno T, Albers P, Nadtochenko V (2005) Preparation, testing and characterization of doped \({\text{ TiO}_{2}}\) active in the peroxidation of biomolecules under visible light. J Phys Chem B 109(12):5994–6003. https://doi.org/10.1021/jp044979c

    Article  CAS  Google Scholar 

  35. Zhu M, Zhai C, Qiu L, Lu C, Paton AS, Du Y, Goh MC (2015) New method to synthesize S-doped \({\text{ TiO}_{2}}\) with stable and highly efficient photocatalytic performance under indoor sunlight irradiation. ACS Sustain Chem Eng 3(12):3123–3129. https://doi.org/10.1021/acssuschemeng.5b01137

    Article  CAS  Google Scholar 

  36. Wang Y, Li J, Peng P, Lu T, Wang L (2008) Preparation of S-\({\text{ TiO}_{2}}\) photocatalyst and photodegradation of L-acid under visible light. Appl Surf Sci 254(16):5276–5280. https://doi.org/10.1016/j.apsusc.2008.02.050

    Article  CAS  Google Scholar 

  37. Seo J, Park SY, Cho J, Lee J, Kim H-H, Lee K-M, Pham AL-T, Lee C (2021) Synergistic effects between the S-\({\text{ TiO}_{2}}\) photocatalyst and the fenton-like reagent: enhanced contaminant oxidation under visible light illumination. J Environ Chem Eng 9(1):104598. https://doi.org/10.1016/j.jece.2020.104598

    Article  CAS  Google Scholar 

  38. Devi LG, Kavitha R (2014) Enhanced photocatalytic activity of sulfur doped \({\text{ TiO}_{2}}\) for the decomposition of phenol: a new insight into the bulk and surface modification. Mater Chem Phys 143(3):1300–1308. https://doi.org/10.1016/j.matchemphys.2013.11.038

    Article  CAS  Google Scholar 

  39. Bredas J-L (2014) Mind the gap! Mater Horiz 1(1):17–19. https://doi.org/10.1039/c3mh00098b

    Article  CAS  Google Scholar 

  40. Tang X, Li D (2008) Sulfur-doped highly ordered \({\text{ TiO}_{2}}\) nanotubular arrays with visible light response. J Phys Chem C 112(14):5405–5409. https://doi.org/10.1021/jp710468a

    Article  CAS  Google Scholar 

  41. Cahen D, Kahn A (2003) Electron energetics at surfaces and interfaces: concepts and experiments. Adv Mater 15(4):271–277. https://doi.org/10.1002/adma.200390065

    Article  CAS  Google Scholar 

  42. Mansfeldova V, Zlamalova M, Tarabkova H, Janda P, Vorokhta M, Piliai L, Kavan L (2021) Work function of \({\text{ TiO}_{2}}\) (anatase, rutile, and brookite) single crystals: effects of the environment. J Phys Chem C 125(3):1902–1912. https://doi.org/10.1021/acs.jpcc.0c10519

    Article  CAS  Google Scholar 

  43. Maheu C, Cardenas L, Puzenat E, Afanasiev P, Geantet C (2018) UPS and UV spectroscopies combined to position the energy levels of \({\text{ TiO}_{2}}\) anatase and rutile nanopowders. Phys Chem Chem Phys 20(40):25629–25637. https://doi.org/10.1039/c8cp04614j

    Article  CAS  Google Scholar 

  44. Kahn A (2016) Fermi level, work function and vacuum level. Mater Horiz 3(1):7–10. https://doi.org/10.1039/C5MH00160A

    Article  CAS  Google Scholar 

  45. Naik B, Kim SM, Jung CH, Moon SY, Kim SH, Park JY (2014) Enhanced \({\text{ H}_{2}}\) generation of Au-loaded, nitrogen-doped \({\text{ TiO}_{2}}\) hierarchical nanostructures under visible light. Adv Mater Interfaces 1(1):1300018. https://doi.org/10.1002/admi.201300018

    Article  CAS  Google Scholar 

  46. Xiao Z, Wang Y, Huang Y-C, Wei Z, Dong C-L, Ma J, Shen S, Li Y, Wang S (2017) Filling the oxygen vacancies in \(\text{ Co}_3\text{ O}_4\) with phosphorus: an ultra-efficient electrocatalyst for overall water splitting. Environ Sci Technol 10:2563–2569. https://doi.org/10.1039/c7ee01917c

    Article  CAS  Google Scholar 

  47. Shu ZX, Bruckenstein S (1991) Iodine adsorption studies at platinum. J Electroanal Chem Interfacial Electrochem 317(1–2):263–277. https://doi.org/10.1016/0022-0728(91)85019-L

    Article  CAS  Google Scholar 

  48. Wang L, Al-Mamun M, Liu P, Wang Y, Yang HG, Wang HF, Zhao H (2015) The search for efficient electrocatalysts as counter electrode materials for dye-sensitized solar cells: mechanistic study, material screening and experimental validation. NPG Asia Mater 7(11):226. https://doi.org/10.1038/am.2015.121

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Jilin province science and technology development projects (20170414025GH).

Author information

Authors and Affiliations

Authors

Contributions

XW involved in investigation, conceptualization, methodology, formal analysis, and writing original draft. TG involved in conceptualization, methodology, and formal analysis. R-JM and XWZ involved in methodology. HW involved in conceptualization, review and editing. XZ involved in conceptualization, resources, review and editing, and funding acquisition.

Corresponding author

Correspondence to Xu Zhao.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Additional information

Handling Editor: Pedro Camargo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (docx 11056 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Ma, RJ., Guo, T. et al. S-TiO2/Ti as efficient and stable electrocatalysts electrode for decomposition of HI to produce hydrogen. J Mater Sci 58, 15035–15046 (2023). https://doi.org/10.1007/s10853-023-08930-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08930-5

Navigation