Skip to main content
Log in

Self-supported ternary Co0.5Mn0.5P/carbon cloth (CC) as a high-performance hydrogen evolution electrocatalyst

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Scalable production of earth-abundant, easy-to-prepare, and cost-effective electrocatalysts for the hydrogen evolution reaction (HER) is essential for sustainable energy-based systems. Herein, we systematically studied the electrocatalytic HER performance of a self-supported ternary Co0.5Mn0.5P/carbon cloth (CC) nanomaterial prepared using a hydrothermal reaction and phosphorization process. Electrochemical tests demonstrated that the ternary Co0.5Mn0.5P/CC nanomaterial could be a highly active electrocatalyst in acidic media, with overpotentials of only 41 and 89 mV, affording current densities of 10 and 100 mA·cm–2, respectively, and a Tafel slope of 41.7 mV·dec–1. Furthermore, the electrocatalyst exhibited superior stability, with 3,000 cycles of cyclic voltammetry from–0.2 to 0.2 V at a scan rate of 100 mV·s–1 and 40 h of static polarization at a fixed overpotential of 83 mV, indicating its potential for large-scale hydrogen production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cabán-Acevedo, M.; Stone, M. L.; Schmidt, J. R.; Thomas, J. G.; Ding, Q.; Chang, H. C.; Tsai, M. L.; He, J. H.; Jin, S. Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide. Nat. Mater. 2015, 14, 1245–1251.

    Article  Google Scholar 

  2. Deng, J.; Ren, P. J.; Deng, D. H.; Bao, X. H. Enhanced electron penetration through an ultrathin graphene layer for highly efficient catalysis of the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2015, 54, 2100–2104.

    Article  Google Scholar 

  3. Tian, J. Q.; Liu, Q.; Asiri, A. M.; Sun, X. P. Self-supported nanoporous cobalt phosphide nanowire arrays: An efficient 3D hydrogen-evolving cathode over the wide range of pH 0–14. J. Am. Chem. Soc. 2014, 136, 7587–7590.

    Article  Google Scholar 

  4. Liu, Y. W.; Hua, X. M.; Xiao, C.; Zhou, T. F.; Huang, P. C.; Guo, Z. P.; Pan, B. C.; Xie, Y. Heterogeneous spin states in ultrathin nanosheets induce subtle lattice distortion to trigger efficient hydrogen evolution. J. Am. Chem. Soc. 2016, 138, 5087–5092.

    Article  Google Scholar 

  5. Tatematsu, R.; Inomata, T.; Ozawa, T.; Masuda, H. Electrocatalytic hydrogen production by a nickel(II) complex with a phosphinopyridyl ligand. Angew. Chem., Int. Ed. 2016, 55, 5247–5250.

    Article  Google Scholar 

  6. Wang, F. M.; Li, Y. C.; Shifa, T. A.; Liu, K. L.; Wang, F.; Wang, Z. X.; Xu, P.; Wang, Q. S.; He, J. Selenium-enriched nickel selenide nanosheets as a robust electrocatalyst for hydrogen generation. Angew. Chem., Int. Ed. 2016, 55, 6919–6924.

    Article  Google Scholar 

  7. Wang, K.; Zhou, C. J.; Xi, D.; Shi, Z. Q.; He, C.; Xia, H. Y.; Liu, G. W.; Qiao, G. J. Component-controllable synthesis of Co(SxSe1-x)2 nanowires supported by carbon fiber paper as high-performance electrode for hydrogen evolution reaction. Nano Energy 2015, 18, 1–11.

    Article  Google Scholar 

  8. Zhang, H. B.; Ma, Z. J.; Duan, J. J.; Liu, H. M.; Liu, G. G.; Wang, T.; Chang, K.; Li, M.; Shi, L.; Meng, X. G. et al. Active sites implanted carbon cages in core–shell architecture: Highly active and durable electrocatalyst for hydrogen evolution reaction. ACS Nano 2016, 10, 684–694.

    Article  Google Scholar 

  9. Dasgupta, N. P.; Liu, C.; Andrews, S.; Prinz, F. B.; Yang, P. D. Atomic layer deposition of platinum catalysts on nanowire surfaces for photoelectrochemical water reduction. J. Am. Chem. Soc. 2013, 135, 12932–12935.

    Article  Google Scholar 

  10. Meng, F. K.; Li, J. T.; Cushing, S. K.; Zhi, M. J.; Wu, N. Q. Solar hydrogen generation by nanoscale p–n junction of p-type molybdenum disulfide/n-type nitrogen-doped reduced graphene oxide. J. Am. Chem. Soc. 2013, 135, 10286–10289.

    Article  Google Scholar 

  11. Khan, S. U. M.; Al-Shahry, M.; Ingler, W. B. Efficient photochemical water splitting by a chemically modified n-TiO2. Science 2002, 297, 2243–2245.

    Article  Google Scholar 

  12. Zhang, J.; Wang, T.; Pohl, D.; Rellinghaus, B.; Dong, R. H.; Liu, S. H.; Zhuang, X. D.; Feng, X. L. Interface engineering of MoS2/Ni3S2 heterostructures for highly enhanced electrochemical overall-water-splitting activity. Angew. Chem., Int. Ed. 2016, 55, 6702–6707.

    Article  Google Scholar 

  13. Zhao, Y.; Nakamura, R.; Kamiya, K.; Nakanishi, S.; Hashimoto, K. Nitrogen-doped carbon nanomaterials as non-metal electrocatalysts for water oxidation. Nat. Commun. 2013, 4, 2390.

    Google Scholar 

  14. Hinnemann, B.; Moses, P. G.; Bonde, J.; Jørgensen, K. P.; Nielsen, J. H.; Horch, S.; Chorkendorff, I.; Nørskov, J. K. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 2005, 127, 5308–5309.

    Article  Google Scholar 

  15. Zhang, J. T.; Qu, L. T.; Shi, G. Q.; Liu, J. Y.; Chen, J. F.; Dai, L. M. N,P-codoped carbon networks as efficient metal-free bifunctional catalysts for oxygen reduction and hydrogen evolution reactions. Angew. Chem., Int. Ed. 2016, 55, 2230–2234.

    Article  Google Scholar 

  16. Shi, Y. M.; Zhang, B. Recent advances in transition metal phosphide nanomaterials: Synthesis and applications in hydrogen evolution reaction. Chem. Soc. Rev. 2016, 45, 1529–1541.

    Article  Google Scholar 

  17. Wang, J. H.; Cui, W.; Liu, Q.; Xing, Z. C.; Asiri, A. M.; Sun, X. P. Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting. Adv. Mater. 2016, 28, 215–230.

    Article  Google Scholar 

  18. Zou, X. X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44, 5148–5180.

    Article  Google Scholar 

  19. Ledendecker, M.; Krick Calderón, S.; Papp, C.; Steinrück, H. P.; Antonietti, M.; Shalom, M. The synthesis of nanostructured Ni5P4 films and their use as a non-noble bifunctional electrocatalyst for full water splitting. Angew. Chem., Int. Ed. 2015, 54, 12361–12365.

    Article  Google Scholar 

  20. Popczun, E. J.; McKone, J. R.; Read, C. G.; Biacchi, A. J.; Wiltrout, A. M.; Lewis, N. S.; Schaak, R. E. Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 2013, 135, 9267–9270.

    Article  Google Scholar 

  21. Feng, L. G.; Vrubel, H.; Bensimon, M.; Hu, X. L. Easilyprepared dinickel phosphide (Ni2P) nanoparticles as an efficient and robust electrocatalyst for hydrogen evolution. Phys. Chem. Chem. Phys. 2014, 16, 5917–5921.

    Article  Google Scholar 

  22. Liu, Q.; Tian, J. Q.; Cui, W.; Jiang, P.; Cheng, N. Y.; Asiri, A. M.; Sun, X. P. Carbon nanotubes decorated with CoP nanocrystals: A highly active non-noble-metal nanohybrid electrocatalyst for hydrogen evolution. Angew. Chem., Int. Ed. 2014, 53, 6710–6714.

    Article  Google Scholar 

  23. Yang, H. C.; Zhang, Y. J.; Hu, F.; Wang, Q. B. Urchin-like CoP nanocrystals as hydrogen evolution reaction and oxygen reduction reaction dual-electrocatalyst with superior stability. Nano Lett. 2015, 15, 7616–7620.

    Article  Google Scholar 

  24. Popczun, E. J.; Read, C. G.; Roske, C. W.; Lewis, N. S.; Schaak, R. E. Highly active electrocatalysis of the hydrogen evolution reaction by cobalt phosphide nanoparticles. Angew. Chem., Int. Ed. 2014, 53, 5427–5430.

    Article  Google Scholar 

  25. Jiang, P.; Liu, Q.; Liang, Y. H.; Tian, J. Q.; Asiri, A. M.; Sun, X. P. A cost-effective 3D hydrogen evolution cathode with high catalytic activity: FeP nanowire array as the active phase. Angew. Chem., Int. Ed. 2014, 53, 12855–12859.

    Article  Google Scholar 

  26. Callejas, J. F.; McEnaney, J. M.; Read, C. G.; Crompton, J. C.; Biacchi, A. J.; Popczun, E. J.; Gordon, T. R.; Lewis, N. S.; Schaak, R. E. Electrocatalytic and photocatalytic hydrogen production from acidic and neutral-pH aqueous solutions using iron phosphide nanoparticles. ACS Nano 2014, 8, 11101–11107.

    Article  Google Scholar 

  27. Xu, Y.; Wu, R.; Zhang, J. F.; Shi, Y. M.; Zhang, B. Anionexchange synthesis of nanoporous FeP nanosheets as electrocatalysts for hydrogen evolution reaction. Chem. Commun. 2013, 49, 6656–6658.

    Article  Google Scholar 

  28. Xiao, P.; Sk, M. A.; Thia, L.; Ge, X. M.; Lim, R. J.; Wang, J.-Y.; Lim, K. H.; Wang, X. Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction. Energy Environ. Sci. 2014, 7, 2624–2629.

    Article  Google Scholar 

  29. Kibsgaard, J.; Jaramillo, T. F. Molybdenum phosphosulfide: An active, acid-stable, earth-abundant catalyst for the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2014, 53, 14433–14437.

    Article  Google Scholar 

  30. McEnaney, J. M.; Crompton, J. C.; Callejas, J. F.; Popczun, E. J.; Biacchi, A. J.; Lewis, N. S.; Schaak, R. E. Amorphous molybdenum phosphide nanoparticles for electrocatalytic hydrogen evolution. Chem. Mat. 2014, 26, 4826–4831.

    Article  Google Scholar 

  31. Kibsgaard, J.; Tsai, C.; Chan, K. R.; Benck, J. D.; Nørskov, J. K.; Abild-Pedersen, F.; Jaramillo, T. F. Designing an improved transition metal phosphide catalyst for hydrogen evolution using experimental and theoretical trends. Energy Environ. Sci. 2015, 8, 3022–3029.

    Article  Google Scholar 

  32. Feng, Y.; Yu, X. Y.; Paik, U. Nickel cobalt phosphides quasi-hollow nanocubes as an efficient electrocatalyst for hydrogen evolution in alkaline solution. Chem. Commun. 2016, 52, 1633–1636.

    Article  Google Scholar 

  33. Wang, C. D.; Ding, T.; Sun, Y.; Zhou, X. L.; Liu, Y.; Yang, Q. Ni12P5 nanoparticles decorated on carbon nanotubes with enhanced electrocatalytic and lithium storage properties. Nanoscale 2015, 7, 19241–19249.

    Article  Google Scholar 

  34. Han, S.; Feng, Y. L.; Zhang, F.; Yang, C. Q.; Yao, Z. Q.; Zhao, W. X.; Qiu, F.; Yang, L. Y.; Yao, Y. F.; Zhuang, X. D. et al. Metal-phosphide-containing porous carbons derived from an ionic-polymer framework and applied as highly efficient electrochemical catalysts for water splitting. Adv. Funct. Mat. 2015, 25, 3899–3906.

    Article  Google Scholar 

  35. Zhang, Z.; Lu, B. P.; Hao, J. H.; Yang, W. S.; Tang, J. L. FeP nanoparticles grown on graphene sheets as highly active non-precious-metal electrocatalysts for hydrogen evolution reaction. Chem. Commun. 2014, 50, 11554–11557.

    Article  Google Scholar 

  36. Tian, J. Q.; Liu, Q.; Cheng, N. Y.; Asiri, A. M.; Sun, X. P. Self-supported Cu3P nanowire arrays as an integrated high-performance three-dimensional cathode for generating hydrogen from water. Angew. Chem., Int. Ed. 2014, 53, 9577–9581.

    Article  Google Scholar 

  37. Tran, P. D.; Chiam, S. Y.; Boix, P. P.; Ren, Y.; Pramana, S. S.; Fize, J.; Artero, V.; Barber, J. Novel cobalt/nickel–tungsten-sulfide catalysts for electrocatalytic hydrogen generation from water. Energy Environ. Sci. 2013, 6, 2452.

    Article  Google Scholar 

  38. Wang, K.; Xi, D.; Zhou, C. J.; Shi, Z. Q.; Xia, H. Y.; Liu, G. W.; Qiao, G. J. CoSe2 necklace-like nanowires supported by carbon fiber paper: A 3D integrated electrode for the hydrogen evolution reaction. J. Mater. Chem. A 2015, 3, 9415–9420.

    Article  Google Scholar 

  39. Liang, H. F.; Meng, F.; Cabán-Acevedo, M.; Li, L. S.; Forticaux, A.; Xiu, L. C.; Wang, Z. C.; Jin, S. Hydrothermal continuous flow synthesis and exfoliation of NiCo layered double hydroxide nanosheets for enhanced oxygen evolution catalysis. Nano Lett. 2015, 15, 1421–1427.

    Article  Google Scholar 

  40. Peng, Z.; Jia, D. S.; Al-Enizi, A. M.; Elzatahry, A. A.; Zheng, G. F. From water oxidation to reduction: Homologous Ni-Co based nanowires as complementary water splitting electrocatalysts. Adv. Energy Mater. 2015, 5, 1402031.

    Article  Google Scholar 

  41. Ahn, H. S.; Tilley, T. D. Electrocatalytic water oxidation at neutral ph by a nanostructured Co(PO3)2 anode. Adv. Funct. Mater. 2013, 23, 227–233.

    Article  Google Scholar 

  42. Li, J. F.; Xiong, S. L.; Li, X. W.; Qian, Y. T. A facile route to synthesize multiporous MnCo2O4 and CoMn2O4 spinel quasi-hollow spheres with improved lithium storage properties. Nanoscale 2013, 5, 2045–2054.

    Article  Google Scholar 

  43. Wang, J. G.; Jin, D. D.; Zhou, R.; Li, X.; Liu, X. R.; Shen, C.; Xie, K. Y.; Li, B. H.; Kang, F. Y.; Wei, B. Q. Highly flexible graphene/Mn3O4 nanocomposite membrane as advanced anodes for Li-Ion batteries. ACS Nano 2016, 10, 6227–6234.

    Article  Google Scholar 

  44. Chen, G.-F.; Ma, T. Y.; Liu, Z.-Q.; Li, N.; Su, Y.-Z.; Davey, K.; Qiao, S.-Z. Efficient and stable bifunctional electrocatalysts Ni/NixMy (M = P, S) for overall water splitting. Adv. Funct. Mater. 2016, 26, 3314–3323.

    Article  Google Scholar 

  45. Duan, J. J.; Chen, S.; Chambers, B. A.; Andersson, G. G.; Qiao, S. Z. 3D WS2 nanolayers@heteroatom-doped graphene films as hydrogen evolution catalyst electrodes. Adv. Mater. 2015, 27, 4234–4241.

    Article  Google Scholar 

  46. Zhang, X. Y.; Li, L. B.; Guo, Y. X.; Liu, D.; You, T. Y. Amorphous flower-like molybdenum-sulfide-@-nitrogendoped-carbon-nanofiber film for use in the hydrogen-evolution reaction. J. Colloid Interface Sci. 2016, 472, 69–75.

    Article  Google Scholar 

  47. Li, Y. G.; Wang, H. L.; Xie, L. M.; Liang, Y. Y.; Hong, G. S.; Dai, H. J. MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 2011, 133, 7296–7299.

    Article  Google Scholar 

  48. Faber, M. S.; Dziedzic, R.; Lukowski, M. A.; Kaiser, N. S.; Ding, Q.; Jin, S. High-performance electrocatalysis using metallic cobalt pyrite (CoS2) micro- and nanostructures. J. Am. Chem. Soc. 2014, 136, 10053–10061.

    Article  Google Scholar 

  49. Zheng, X. L.; Xu, J. B.; Yan, K. Y.; Wang, H.; Wang, Z. L.; Yang, S. H. Space-confined growth of MoS2 nanosheets within graphite: The layered hybrid of MoS2 and graphene as an active catalyst for hydrogen evolution reaction. Chem. Mater. 2014, 26, 2344–2353.

    Article  Google Scholar 

Download references

Acknowledgements

This project was supported by National Natural Science Foundation of China (No. 21190040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erkang Wang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Gu, W. & Wang, E. Self-supported ternary Co0.5Mn0.5P/carbon cloth (CC) as a high-performance hydrogen evolution electrocatalyst. Nano Res. 10, 1001–1009 (2017). https://doi.org/10.1007/s12274-016-1359-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1359-4

Keywords

Navigation