Skip to main content

Advertisement

Log in

High Performance Polylactide Toughened by Supertough Polyester Thermoplastic Elastomers: Properties and Mechanism

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

It is a challenge to develop a biodegradable toughener to toughen polylactic acid (PLA) with both high strength and high toughness, since toughness and strength are mutually exclusive. Here, a series of supertough polyester thermoplastic elastomers (TPEs), poly(L/D-lactide)-b-poly(ε-caprolactone-co-δ-valerolactone)-b-poly (L/D-lactide)s (PLLA-PCVL-PLLA, L-TPEs or PDLA-PCVL-PDLA, D-TPEs), were prepared and blended with a PLLA matrix to toughen PLLA. The mechanical properties of PLLA could be regulated in a wide range by changing blending ratios and TPE structures. For PLLA blends toughened by L-TPEs, the highest elongation at break is up to 425% with the tensile strength of 33.1 MPa and the toughness of 104 MJ/m3. By the stereocomplex crystallization of PLA (sc-PLA), the tensile strength of the PLLA/D-TPE blends further increased to 41.8 MPa with a similar elongation at break (418%) and the toughness up to 128 MJ/m3. The detailed characterizations revealed a toughening mechanism: (I) the added soft segments increased the ductility of the PLLA matrix, (II) the PLLA segments of L-TPEs increased the compatibility between TPEs and PLLA matrix, and (III) the formation of sc-PLA between the PDLA segments in D-TPE and PLLA provided higher tensile strength by enhancing the strength of the crystal skeleton. The toughened PLA using TPEs can maintain original non-toxic and degradable properties, and be applied potentially in surgical sutures, and 3D-printed scaffolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Moradi S., Yeganeh J. K., Polym. Test., 2020, 91, 106735

    CAS  Google Scholar 

  2. Zhou X., Deng J., Fang C., Leia W., Song Y., Zhang Z., Huang Z., Li Y., J. Mater. Sci. Technol., 2021, 60, 27

    CAS  Google Scholar 

  3. Izraylit V., Heuchel M., Gould O. E. C., Kratz K., Lendlein A., Polymer, 2020, 209, 122984

    CAS  Google Scholar 

  4. Cao X., Wang Y., Chen H., Hu J., Cui L., Composites Part B, 2021, 217, 108934

    CAS  Google Scholar 

  5. Jing Z., Huang X., Liu X., Liao M., Zhang Z., Li Y., RSC Adv., 2022, 12, 13180

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Yang J., Pan H., Li X., Sun S., Zhang H., Dong L., RSC Adv., 2017, 7, 46183

    CAS  Google Scholar 

  7. Hirata M., Masutani K., Kimura Y., Biomacromolecules, 2013, 14, 2154

    CAS  PubMed  Google Scholar 

  8. Ma P., Spoelstra A. B., Schmit P., Lemstra P. J., Eur. Polym. J., 2013, 49, 1523

    CAS  Google Scholar 

  9. Tan B. H., Muiruri J. K., Li Z., He C., ACS Sustain. Chem. Eng., 2016, 4, 5370

    CAS  Google Scholar 

  10. Ma P., Hristova-Bogaerds D. G., Goossens J. G. P., Spoelstra A. B., Zhang Y., Lemstra P. J., Eur. Polym. J., 2012, 48, 146

    CAS  Google Scholar 

  11. Yeo J. C. C., Muiruri J. K., Thitsartarn W., Lib Z., He C., Mater. Sci. Eng. C, 2018, 92, 1092

    CAS  Google Scholar 

  12. Sun Y., Yang L., Lu X., He C., J. Mater. Chem. A, 2015, 3, 3699

    CAS  Google Scholar 

  13. Lebarbé T., Grau É., Cramail H., Eur. Polym. J., 2015, 65, 276

    Google Scholar 

  14. Sun Fan X., Lu X., He C., Macromol. Rapid Commun., 2019, 40, 1800047

    Google Scholar 

  15. Wen J., Yi L., Su J., Han J., Int. J. Biol. Macromol., 2023, 231, 123419

    CAS  PubMed  Google Scholar 

  16. Srisuwan Y., Baimark Y., Suttiruengwong S., Int. J. Biomater., 2018, 2018, 1294397

    PubMed  PubMed Central  Google Scholar 

  17. Rathi S. R., Coughlin E. B., Hsu S. L., Golub C. S., Ling G. H., Tzivanis M. J., Polymer, 2012, 53, 3008

    CAS  Google Scholar 

  18. Grijpma D. W., Pennings A. J., Polym. Bull., 1991, 25, 335

    CAS  Google Scholar 

  19. Zhao X., Hu H., Wang X., Yu X., Zhou W., Peng S., RSC Adv., 2020, 10, 13316

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Lin J.-O., Chen W., Shen Z., Ling J., Macromolecules, 2013, 46, 7769

    CAS  Google Scholar 

  21. Wang M., Wu Y., Li Y.-D., Zeng J.-B., Polym. Rev., 2017, 57, 557

    CAS  Google Scholar 

  22. Zhao T.-H., Yuan W.-Q., Li Y.-D., Weng Y.-X., Zeng J.-B., Macromolecules, 2018, 51, 2027

    CAS  Google Scholar 

  23. Xiu H., Bai H. W., Huang C. M., Xu C. L., Li X. Y., Fu Q., Express Polym. Lett., 2013, 7, 261

    CAS  Google Scholar 

  24. Zhang X., Koranteng E., Wu Z., Wu Q., J. Appl. Polym. Sci., 2016, 133, 42983

    Google Scholar 

  25. Yu R.-L., Zhang L.-S., Feng Y.-H., Zhang R.-Y., Zhu J., Chin. J. Polym. Sci., 2014, 32, 1099

    CAS  Google Scholar 

  26. Kasyapi N., Bhowmick A. K., RSC Adv., 2014, 4, 27439

    CAS  Google Scholar 

  27. Mulchandani N., Masutani K., Kumar S., Yamane H., Sakurai S., Kimura Y., Katiyar V., Polym. Chem., 2021, 12, 3806

    CAS  Google Scholar 

  28. Kim J.-H., Lee J. H., Polym. J., 2002, 34, 203

    CAS  Google Scholar 

  29. Liu G.-C., He Y.-S., Zeng J.-B., Li Q.-T., Wang Y.-Z., Biomacromolecules, 2014, 15, 4260

    CAS  PubMed  Google Scholar 

  30. Li T.-T., Zhang H., Huang S.-Y., Pei X., Lin Q., Tian S., Ma Z., Lin J.-H., J. Polym. Res., 2021, 28, 156

    CAS  Google Scholar 

  31. Pez-Rodríguez N. L., Pez-Arraiza A. L. E. Meaurio J. R. S., Polym. Eng. Sci., 2006, 46, 1299

    Google Scholar 

  32. Jiang L., Wolcott M. P., Zhang J., Biomacromolecules, 2006, 7, 199

    PubMed  Google Scholar 

  33. Al-Itry R., Lamnawar K., Maazouz A., Polym. Degrad. Stab., 2012, 97, 1898

    CAS  Google Scholar 

  34. Lebarbé T., Grau E., Gadenne B., Alfos C., Cramail H., ACS Sustainable Chem. Eng., 2015, 3, 283

    Google Scholar 

  35. Xiang S., Feng L., Bian X., Zhang B., Sun B., Liu Y., Li G., Chen X., Polym. Adv. Technol., 2019, 30, 963

    CAS  Google Scholar 

  36. Yang S., Madbouly S. A., Schrader J. A., Srinivasan G., Grewell D., McCabe K. G., Kesslere M. R., Gravesc W. R., Green Chem., 2015, 17, 380

    CAS  Google Scholar 

  37. Chen W., Qi C., Li Y., Tao H., Radiat. Phys. Chem., 2021, 180, 109239

    CAS  Google Scholar 

  38. Hu X., Su T., Li P., Wang Z., Polym. Bull., 2018, 75, 533

    CAS  Google Scholar 

  39. Harada M., Iida K., Okamoto K., Hayashi H., Hirano K., Polym. Eng. Sci., 2008, 48, 1359

    CAS  Google Scholar 

  40. Lin S., Guo W., Chen C., Ma J., Wang B., Mater. Des., 2012, 36, 604

    CAS  Google Scholar 

  41. Bian Y., Han C., Han L., Lin H., Zhang H., Biana J., Dong L., RSC Adv., 2014, 4, 41722

    CAS  Google Scholar 

  42. Yang X., Clénet J., Xu H., Odelius K., Hakkarainen M., Macromolecules, 2015, 48, 2509

    CAS  Google Scholar 

  43. Wang R., Wang S., Zhang Y., J. Appl. Polym. Sci., 2010, 113, 3630

    Google Scholar 

  44. Zhao W., Li C., Yang X., He J., Pang X., Zhang Y., Men Y., Chen X., CCS Chem., 2022, 4, 1263

    CAS  Google Scholar 

  45. Liu Y., Shao J., Sun J., Bian X., Feng L., Xiang S., Sun B., Chen Z., Li G., Chen X., Polym. Degrad. Stab., 2014, 101, 10

    CAS  Google Scholar 

  46. Xiao X., Chevali V. S., Song P., Yu B., Yang Y., Wang H., Compos. Commun., 2020, 21, 100385

    Google Scholar 

  47. Feng L., Bian X., Li G., Chen X., Macromolecules, 2021, 54, 10163

    CAS  Google Scholar 

  48. Shi X., Qin J., Wang L., Ren L., Rong F., Li D., Wang R., Zhang G., RSC Adv., 2018, 8, 11850

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Meredith J. C., Amis E. J., Macromol. Chem. Phys., 2000, 201, 733

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No.2022YFB3704900), the National Natural Science Foundation of China (Nos. 22225104, 22071077, 21871107, 21975102) and the China Postdoctoral Science Foundation (Nos. 2022TQ0115 and 2022M711297).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wuchao Zhao or Jianghua He.

Ethics declarations

The authors declare no conflicts of interest.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, S., Zhao, W., He, J. et al. High Performance Polylactide Toughened by Supertough Polyester Thermoplastic Elastomers: Properties and Mechanism. Chem. Res. Chin. Univ. 39, 750–756 (2023). https://doi.org/10.1007/s40242-023-3160-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-023-3160-8

Keywords

Navigation