Skip to main content
Log in

Theoretical Study of Stability and Electronic Characteristics in Various Complexes of Psoralen as an Anticancer Drug in Gas Phase, Water and CCl4 Solutions

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

The present research employs density functional theory(DFT) computations to analyze the structure and energy of complexes formed by psoralen drug with alkali(Li+, Na+, K+) and alkaline earth(Be2+, Mg2+, Ca2+) metal cations. The computations are conducted on M06-2X/aug-cc-pVTZ level of theory in the gas phase and solution. The Atoms in Molecules(AIM) and natural bond orbital(NBO) analyses are applied to evaluating the characterization of bonds and the atomic charge distribution, respectively. The results show that the absolute values of binding energies decrease with going from the gas phase to the solution. Furthermore, the considered complexes in the water(as a polar solvent) are more stable than the CCl4(as a non-polar solvent). The DFT based chemical reactivity indices, such as molecular orbital energies, chemical potential, hardness and softness are also investigated. The outcomes show that the considered complexes have high chemical stability and low reactivity from the gas phase to the solution. Finally, charge density distributions and chemical reactive sites of a typical complex explored in this study are obtained by molecular electrostatic potential surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thakur A., Sharma R., Jaswal V. S., Nepovimova E., Chaudhary A., Kuca K., Mini. Rev. Med. Chem., 2020, 20(18), 1838

    Article  CAS  PubMed  Google Scholar 

  2. Yarchoan R., Uldrick T. S., N. Engl. J. Med., 2018, 378(11), 1029

    Article  PubMed  PubMed Central  Google Scholar 

  3. Butrón-Bris B., Daudén E., Rodríguez-Jiménez P., Life, 2021, 11, 1109

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ibbotson S. H., Front. Med. (Lausanne), 2018, 5, 184

    Article  PubMed  Google Scholar 

  5. Rahman S., Wineman-Fisher V., Nagy P. R., Al-Hamdani Y., Tkatchenko A., Varma S., Chem. Eur. J., 2021, 27(42), 11005

    Article  CAS  PubMed  Google Scholar 

  6. Patrick S. C., Hein R., Docker A., Beer P. D., Davis J. J., Chem. Eur. J., 2021, 27(39), 10201

    Article  CAS  PubMed  Google Scholar 

  7. Osifová Z., Socha O., Čechová L. M., Šála M., Janeba Z., Dračínský M., Eur. J. Org. Chem., 2021, 2021(29), 4166

    Article  Google Scholar 

  8. Chun Zeng H., Chem. Cat. Chem., 2020, 12(21), 5303

    Google Scholar 

  9. Mahmudov K. T., Kopylovich M. N., Guedes da Silva M. F. C., Pombeiro A. J. L., Dalton Trans., 2017, 46, 10121

    Article  CAS  PubMed  Google Scholar 

  10. Kashyap C., Ullah S. S., Mazumder L. J., Guha A. K., Comput. Theor. Chem., 2018, 1130, 134

    Article  CAS  Google Scholar 

  11. Baykov S. V., Mikherdov A. S., Novikov A. S., Geyl K. K., Tarasenko M. V., Gureev M. A., Boyarskiy V. P., Molecules, 2021, 26, 5672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Barrientos L., Miranda-Rojas S., Mendizabal F., Int. J. Quantum Chem., 2019, 119, e25675

    Article  Google Scholar 

  13. Alirezapour F., Khanmohammadi A., Theor. Chem. Acc., 2020, 139, 180

    Article  CAS  Google Scholar 

  14. Khanmohammadi A., Ravari F., Phys. Chem. Res., 2017, 5, 57

    CAS  Google Scholar 

  15. Liang Z., Li Q. X., J. Agric. Food Chem., 2018, 66(13), 3315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Infield D. T., Rasouli A., Galles G. D., Chipot C., Tajkhorshid E., Ahern C. A., J. Mol. Biol., 2021, 433, 167035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yourdkhani S., Chojecki M., Korona T., Phys. Chem. Chem. Phys., 2019, 21, 6453

    Article  CAS  PubMed  Google Scholar 

  18. Seong H. K., Kyoung-Ran K., Dae-Ro A., Ji E. L., Eun G. Y., So Y. K., ACS Nano, 2017, 11(9), 9352

    Article  Google Scholar 

  19. Khemaissa S., Sagan S., Walrant A., Crystals, 2021, 11, 1032

    Article  CAS  Google Scholar 

  20. Cohen B. E., Front. Cell Dev. Biol., 2018, 6, 76

    Article  PubMed  PubMed Central  Google Scholar 

  21. Mohammadi M., Khanmohammadi A., Theor. Chem. Acc., 2020, 139, 141

    Article  CAS  Google Scholar 

  22. Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Peters-Son G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmay-Lov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Jr.Montgomery J. A., Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staro-Verov V. N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam J. M., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jara-Millo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dapprich S., Daniels A. D., Farkas Ö., Foresman J. B., Ortiz J. V., Cioslowski J., Fox D. J., Gaussian 09 (Revision A.02), Gaussian, Inc., Wallingford CT, 2009

    Google Scholar 

  23. Boys S. F., Bernardi F., Mol. Phys, 2002, 19, 553

    Article  Google Scholar 

  24. Quan C., Stamm B., Maday Y., Math. Models Methods Appl. Sci., 2018, 28, 1233

    Article  CAS  Google Scholar 

  25. Michalski M., Gordon A. J., Berski S., Struct. Chem., 2019, 30, 2181

    Article  CAS  Google Scholar 

  26. BieglerKönig F., Schönbohm J., J. Comput. Chem., 2002, 23, 1489

    Article  PubMed  Google Scholar 

  27. Weinhold F., Landis C., Glendening E., Int. Rev. Phys. Chem., 2016, 35, 399

    Article  CAS  Google Scholar 

  28. Glendening E. D., Reed A. E., Carpenter J. E., Weinhold F., NBO, Version 3.1(in), Gaussian Inc., Pittsburg, CT, 2009

    Google Scholar 

  29. Ludwig M., Himmel D., Hillebrecht H., J. Phys. Chem. A, 2020, 124(11), 2173

    Article  CAS  PubMed  Google Scholar 

  30. Bajac D. F. E., Aucar I. A., Aucar G. A., Phys. Rev. A, 2021, 104, 012805

    Article  CAS  Google Scholar 

  31. Dobrowolski J. C., ACS Omega. 2019, 4(20), 18699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Makino M., Nishina N., Aihara J., J. Phys. Org. Chem., 2017, 31, e3783

    Article  Google Scholar 

  33. Mohammadi M., Khanmohammadi A., Theor. Chem. Acc., 2019, 138, 101

    Article  Google Scholar 

  34. Alirezapour F., Khanmohammadi A., Acta. Cryst., 2020, C76, 982

    Google Scholar 

  35. Alirezapour F., Khanmohammadi A., J. Chin. Chem. Soc., 2021, 68, 1002

    Article  CAS  Google Scholar 

  36. Szatylowicz H., Domanski M. A., Krygowski T. M., ChemistryOpen, 2019, 8(1), 64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tsurusaki A., Kamikawa K., Chem. Lett., 2021, 50, 1913

    Article  CAS  Google Scholar 

  38. Sadlej-Sosnowska N., Struct. Chem., 2019, 30, 1407

    Article  CAS  Google Scholar 

  39. Koperwas K., Adrjanowicz K., Grzybowski A., Paluch M., Sci. Rep., 2020, 10, 283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Heid E., Hunt P. A., Schröder C., Phys. Chem. Chem. Phys., 2018, 20(13), 8554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pirgheibi M., Mohammadi M., Khanmohammadi A., Comput. Theor. Chem., 2021, 1198, 113172

    Article  CAS  Google Scholar 

  42. Mohammadi M., Alirezapour F., Khanmohammadi A., Theor. Chem. Acc., 2021, 140, 104

    Article  CAS  Google Scholar 

  43. Pirgheibi M., Mohammadi M., Khanmohammadi A., Struct. Chem., 2021, 32, 1529

    Article  CAS  Google Scholar 

  44. Gad E. A. M., Azzam E. M. S., Abdel H. S., Egypt. J. Pet., 2018, 27(4), 695

    Article  Google Scholar 

  45. Vidhya V., Austine A., Arivazhagan M., Heliyon, 2019, 5(11), e02365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ramalingam A., Gurunathan R. K., Chanda N. P., ACS Omega., 2020, 5(27), 16885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dheivamalar S., Bansura B. K., Heliyon, 2019, 5, e02903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Khanmohammadi A., Mohammadi M., J. Chil. Chem. Soc., 2019, 64, 4265

    Article  Google Scholar 

  49. Yoosefian M., Mola A., Hajiabadi H., Amiri D. R., Mahdavi S. S. M., Journal of Molecular Liquids, 2018, 264, 115

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Vali-e-Asr University of Rafsanjan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marziyeh Mohammadi.

Additional information

Conflicts of Interest

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi, M., Mahinian, M. & Khanmohammadi, A. Theoretical Study of Stability and Electronic Characteristics in Various Complexes of Psoralen as an Anticancer Drug in Gas Phase, Water and CCl4 Solutions. Chem. Res. Chin. Univ. 38, 1414–1424 (2022). https://doi.org/10.1007/s40242-022-1475-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-022-1475-5

Keywords

Navigation