Skip to main content
Log in

Theoretical investigation on the non-covalent interactions of acetaminophen complex in different solvents: study of the enhancing effect of the cation–π interaction on the intramolecular hydrogen bond

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

In the current research, a comprehensive study is performed on the non-covalent interactions of the acetaminophen complex in the presence of various solvents. In addition, the effect of cation–π interaction on the strength and nature of the intramolecular hydrogen bond (H-bond) is explored by density functional theory method. The computations are performed using the M06-2X functional and the 6-311++G(d,p) basis set. The obtained results reveal that both interactions become stronger in the gas phase with respect to the solution phase. The “atoms in molecules” theory and the natural bond orbital method are also applied to get more details about the investigated interactions character. Based on the achieved outcomes, the H-bond of the studied complex is placed in the weak H-bond category. Our findings indicate that the intramolecular H-bond is strengthened by the cation–π interaction in the different solvents. Finally, the physical properties such as frontier molecular orbitals, energy gap, dipole moment, chemical hardness as well as electronic chemical potential are investigated to evaluate the electronic properties, stability and reactivity of the studied complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Peter JZ, Pharm D, Edward PK, Pharm D, ABAT (1991) Treatment of acetaminophen overdose. Am J Health Syst Pharm 56:1081–1091

    Google Scholar 

  2. Lee WM (2017) Acetaminophen (APAP) hepatotoxicity-Isn’t it time for APAP to go away? J Hepatol 67:1324–1331

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Mangus BC, Miller MG (2005) Pharmacology application in athletic training. F.A Davis Company, Philadelphia

    Google Scholar 

  4. Hamilton RJ (2013) Tarascon pocket pharmacopoeia: 2013 classic shirt-pocket edition. Jones & Bartlett Learning, Burlington

    Google Scholar 

  5. McKay GA, Walters MR (2013) Clinical pharmacology and therapeutics. Wiley, Hoboken

    Google Scholar 

  6. Ghanem CI, Pérez MJ, Manautou JE, Mottino AD (2016) Acetaminophen from liver to brain: new insights into drug pharmacological action and toxicity. Pharmacol Res 109:119–131

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Viswanathan AN, Feskanich D, Schernhammer ES, Hankinson SE (2008) Aspirin, NSAID, and acetaminophen use and the risk of endometrial cancer. Cancer Res 68:2507–2513

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Larson AM, Polson J, Fontana RJ, Davern TJ, Lalani E, Hynan LS, Reisch JS, Schiødt FV, Ostapowicz G, ObaidShakil A, Lee WM (2005) Acetaminophen-induced acute liver failure: results of a United States multicenter, prospective study. Hepatology 42:1364–1372

    CAS  PubMed  Google Scholar 

  9. Ricciotti E, FitzGerald GA (2011) Prostaglandins and inflammation Arterioscler. Thromb Vasc Biol 31:986–1000

    CAS  Google Scholar 

  10. Hinz B, Cheremina O, Brune K (2008) Acetaminophen (paracetamol) is a selective cyclooxygenase-2 inhibitor in man. FASEB J 22:383–390

    CAS  PubMed  Google Scholar 

  11. Muller-Dethlefs K, Hobza P (2000) Noncovalent interactions: a challenge for experiment and theory. Chem Rev 100:143–167

    CAS  PubMed  Google Scholar 

  12. Masoodi HR, Bagheri S, Ranjbar M (2016) Theoretical study of cooperativity between hydrogen bond-hydrogen bond, halogen bond-halogen bond and hydrogen bond-halogen bond in ternary FX···diazine···XF (X = H and Cl) complexes. Mol Phys 114:3464–3474

    CAS  Google Scholar 

  13. Samimi HA, Esrafili M, Mohammadian-Sabet F, Haddadi H (2015) Theoretical study on cooperative interplay between anion–π and chalcogen-bonding interactions. Mol Phys 113:1442–1450

    CAS  Google Scholar 

  14. Nowroozi A, Roohi H, Sadeghi MS, Sheibaninia M (2011) The competition between the intramolecular hydrogen bond and π-electron delocalization in trifluoroacetylacetone—a theoretical study. Int J Quantum Chem 111:578–585

    CAS  Google Scholar 

  15. Esrafili M, Yourdkhani S, Bahrami A (2013) Characteristics and nature of the halogen-bonding interactions between CCl3F and ozone: a supermolecular and SAPT study. Mol Phys 111:3770–3778

    CAS  Google Scholar 

  16. Nowroozi A, Roohi H, Poorsargol M, Mohammadzadeh Jahani P, Hajiabadi H, Raissi H (2011) N–H···S and S–H···N intramolecular hydrogen bond in β-thioaminoacrolein: a quantum chemical study. Int J Quantum Chem 111:3008–3016

    CAS  Google Scholar 

  17. Oshovsky GV, Reinhoudt DN, Verboom W (2007) Supramolecular chemistry in water. Angew Chem Int Ed 46:2366–2399

    CAS  Google Scholar 

  18. Saalfrank RW, Maid H, Scheurer A (2008) Supramolecular coordination chemistry: the synergistic effect of serendipity and rational design. Angew Chem Int Ed 47:8794–8824

    CAS  Google Scholar 

  19. Steiner T (1997) Unrolling the hydrogen bond properties of C–H···O interactions. Chem Commun 8:727–734

    Google Scholar 

  20. Steiner T, Desiraju R (1998) Distinction between the weak hydrogen bond and the van der Waals interaction. Chem Commun 8:891–892

    Google Scholar 

  21. Kodama Y, Nishihata K, Nishio M, Nakagawa N (1977) Attractive interaction between aliphatic and aromatic systems. Tetrahedron Lett 18:2018–2105

    Google Scholar 

  22. Hobza P, Havlas Z (2000) Blue-shifting hydrogen bonds. Chem Rev 100:4253–4264

    CAS  PubMed  Google Scholar 

  23. Umezawa Y, Tsuboyama S, Takahashi H, Uzawa J, Nishio M (1999) CH···π interaction in the conformation of organic compounds. A database study. Tetrahedron 55:10047–10056

    CAS  Google Scholar 

  24. Ungaro R, Pochini A, Andreeti GD, Sangermano V (1984) Molecular inclusion in functionalized macrocycles. Part 8. The crystal and molecular structure of calix[4]arene from phenol and its (1: 1) and (3: 1) acetone clathrates. J Chem Soc Perkin Trans 2(12):1979–1985

    Google Scholar 

  25. Kobayashi K, Asakawa Y, Kato Y, Aoyama Y (1992) Complexation of hydrophobic sugars and nucleosides in water with tetrasulfonate derivatives of resorcinol cyclic tetramer having a polyhydroxy aromatic cavity: importance of guest-host CH–π interaction. J Am Chem Soc 114:10307–10313

    CAS  Google Scholar 

  26. Cubero E, Luque FJ, Orozco M (1998) Is polarization important in cation–π interactions? Proc Natl Acad Sci 95:5976–5980

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Ma JC, Dougherty DA (1997) The cation–π interaction. Chem Rev 97:1303–1324

    CAS  PubMed  Google Scholar 

  28. Lehn JM (1995) Supramolecular chemistry: concepts and perspectives. VCH Weinheim, Berlin

    Google Scholar 

  29. Steed JW, Atwood JL (2000) Supramolecular chemistry. Wiley, West Sussex

    Google Scholar 

  30. Fischer E, Dtsch B (1894) Einfluss der Configuration auf die Wirkung der Enzyme. Chem Ges 27:2985–2993

    CAS  Google Scholar 

  31. Rooman M, Liévin J, Buisine E, Wintjens R (2002) cation–π/H-bond stair motifs at protein-DNA interfaces. J Mol Biol 319:67–76

    CAS  PubMed  Google Scholar 

  32. Starellas C, Escudero D, Frontera A, Quinonero D, Deya PM (2009) Theoretical ab initio study of the interplay between hydrogen bonding, cation–π and ππ interactions. Theor Chem Account 122:325–332

    Google Scholar 

  33. Escudero D, Frontera A, Quiñonero D, Deyà PM (2008) Interplay between cation–π and hydrogen bonding interactions. Chem Phys Lett 456:257–261

    CAS  Google Scholar 

  34. Yong-gan Y, Wen-jing S, Guo-rui F, Fu-de R, Yong W (2012) A B3LYP and MP2 (full) theoretical investigation on the cooperativity effect between cation-molecule and hydrogen-bonding interactions in the O-cresol complex with Na+. Comput Theor Chem 996:91–102

    Google Scholar 

  35. Qingzhong L, Wenzuo L, Jianbo C, Baoan G, Jiazhong S (2008) Effect of methyl group on the cooperativity between cation–π interaction and NH···O hydrogen bonding. J Mol Struct Theochem 867:107–110

    Google Scholar 

  36. Garcia-Raso A, AlbertíF M, Fiol JJ, Tasada A, Barceló-Oliver M, Molins E, Escudero D, Frontera A, Quiñonero D, Deyà PM (2007) Anion − π interactions in bisadenine derivatives: a combined crystallographic and theoretical study. Inorg Chem 46:10724–10735

    CAS  PubMed  Google Scholar 

  37. Greenaway F (1995) Structural aspects of metal ion-drug interactions, handbook of metal-ligand interactions in biological fluids, bioinnorganic chemistry. Marcel Dekker, New York

    Google Scholar 

  38. Ai H, Bu Y, Li P, Li Z, Hu X, Chen Z (2005) Geometry and binding properties of different multiple-state glycine–Fe+/Fe2+ complexes. J Phys Org Chem 18:26–34

    CAS  Google Scholar 

  39. Banu L, Blagojevic V, Bohme DK (2012) Dissociation of deprotonated glycine complexes with Pb2+ and five transition-metal dications (Fe2+, Co2+, Ni2+, Cu2+, Zn2+): the importance of metal bond activation. Int J Mass Spectrom 330–332:168–173

    Google Scholar 

  40. Marino T, Toscano M, Russo N, Grand A (2006) Structural and electronic characterization of the complexes obtained by the interaction between bare and hydrated first-row transition-metal ions (Mn2+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+) and glycine. J Phys Chem B 110:24666–24673

    CAS  PubMed  Google Scholar 

  41. Rodgers MT, Armentrout PB (2004) A thermodynamic, “vocabulary” for metal ion interactions in biological systems. Acc Chem Res 37:989–998

    CAS  PubMed  Google Scholar 

  42. Campbell NRC, Hasinoff BB (1991) Iron supplements: a common cause of drug interactions. Br J Clin Pharm 31:251–255

    CAS  Google Scholar 

  43. Mohamed Issa M, Mahmoud Nejem R, Abu Shanab A (2013) Effects of iron on the pharmacokinetics of paracetamol in saliva. Pak J Biol Sci 16:2050–2053

    Google Scholar 

  44. Moffat AC, Osselton MD, Widdop B, Watts J (2011) Clarkes analysis of drug and poisons. Pharmaceutical Press, London

    Google Scholar 

  45. Sunagane N, Yoshibu E, Murayama N, Terawaki Y, Uruno T (2005) Simple method for precognitions of drug interaction between oral iron and phenolic hydroxyl group-containing drugs. Yakugaku Zasshi 125:197–203

    CAS  PubMed  Google Scholar 

  46. Campbell NA, Hasinoff B (1989) Ferrous sulfate reduces levodopa bioavailability: chelation as a possible mechanism. Clin Pharmacol Therapeut 45:220–225

    CAS  Google Scholar 

  47. Campbell NRC, Rankine D, Goodrige AE, Hasinoff BB, Kara M (1991) Sienemet-ferrous sulphate interaction in patients with Parkinson disease. Br J Clin Pharmacol 30:559–605

    Google Scholar 

  48. Demircan ÇA, Bozkaya U (2017) Transition metal cation–π interactions: complexes Formed by Fe2+, Co2+, Ni2+, Cu2+, and Zn2+ binding with benzene molecules. J Phys Chem A 121(34):6500–6509

    CAS  PubMed  Google Scholar 

  49. Yi HB, Lee HM, Kim KS (2009) Interaction of benzene with transition metal cations: theoretical study of structures, energies, and IR spectra. J Chem Theory Comput 5:1709–1717

    CAS  PubMed  Google Scholar 

  50. Molina JM, Dobado JA, Melchor S (2002) Structural and electronic effects of the interaction of metal cations with benzene. J Mol Struct (Theochem) 589–590:337–347

    Google Scholar 

  51. Kolakkandy S, Pratihar S, Aquino AJA, Wang H, Hase WL (2014) Properties of complexes formed by Na+, Mg2+, and Fe2+ binding with benzene molecules. J Phys Chem A 118:9500–9511

    CAS  PubMed  Google Scholar 

  52. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03 (Revision A.7). Gaussian Inc., Pittsburgh

    Google Scholar 

  53. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements. Theor Chem Acc 120:215–241

    CAS  Google Scholar 

  54. Zhao Y, Schultz NE, Truhlar DG (2005) Exchange-correlation functional with broad accuracy for metallic and nonmetallic compounds, kinetics, and noncovalent interactions. J Chem Phys 123:161103-1–161103-4

    Google Scholar 

  55. Zhao Y, Schultz NE, Truhlar DG (2006) Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions. J Chem Theory Comput 2:364–382

    PubMed  Google Scholar 

  56. Zhao Y, Truhlar DG (2006) A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. J Chem Phys 125:194101-1–194101-18

    Google Scholar 

  57. Zhao Y, Truhlar DG (2007) Density functionals for noncovalent interaction energies of biological importance. J Chem Theory Comput 3:289–300

    CAS  PubMed  Google Scholar 

  58. Miertus S, Scrocco E, Tomasi J (1981) Electrostatic interaction of a solute with a continuum: a direct utilizaion of AB initio molecular potentials for the prevision of solvent effects. Chem Phys 55:117–129

    CAS  Google Scholar 

  59. Espinosa E, Molins E (2000) Retrieving interaction potentials from the topology of the electron density distribution: the case of hydrogen bonds. J Chem Phys 113:5686–5694

    CAS  Google Scholar 

  60. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566

    CAS  Google Scholar 

  61. Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  62. BieglerKönig F, Schönbohm J (2002) Update of the AIM2000-program for atoms in molecules. J Comput Chem 23:1489–1494

    Google Scholar 

  63. Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88:899–926

    CAS  Google Scholar 

  64. Glendening ED, Reed AE, Carpenter JE, Weinhold F (2003) NBO, version 3.1 (in). Gaussian, Inc., Pittsburg, CT

  65. Yoosefian M, Ansarinik Z, Etminan N (2016) Density functional theory computational study on solvent effect, molecular conformations, energies and intramolecular hydrogen bond strength in different possible nano-conformers of acetaminophen. J Mol Liq 213:115–121

    CAS  Google Scholar 

  66. Marshall MS, Steele RP, Thanthiriwatte KS, Sherrill CD (2009) Potential energy curves for cation–π interactions: off-axis configurations are also attractive. J Phys Chem A 113:13628–13632

    CAS  PubMed  Google Scholar 

  67. Bader RFW (1991) A quantum theory of molecular structure and its applications. Chem Rev 91:893–928

    CAS  Google Scholar 

  68. Feynman RP (1939) Forces in molecules. Phys Rev 56:340–343

    CAS  Google Scholar 

  69. Grabowski SJ, Sokalski WA, Dyguda E, Leszczyński J (2006) Quantitative classification of covalent and noncovalent H-bonds. J Phys Chem B 110:6444–6446

    CAS  PubMed  Google Scholar 

  70. Espionsa E, Souhassou M, Lachekar H, Lecomte C (1999) Topological analysis of the electron density in hydrogen bonds. Acta Crystallogr B 55:563–572

    Google Scholar 

  71. Abramov YA (1997) On the possibility of kinetic energy density evaluation from the experimental electron-density distribution. Acta Crystallogr A 53:264–272

    Google Scholar 

  72. Carroll MT, Chang C, Bader RFW (1988) Prediction of the structures of hydrogen-bonded complexes using the Laplacian of the charge density. Mol Phys 63:387–405

    CAS  Google Scholar 

  73. Carroll MT, Bader RFW (1988) An analysis of the hydrogen bond in BASE-HF complexes using the theory of atoms in molecules. Mol Phys 65:695–722

    CAS  Google Scholar 

  74. Vijayakumar S, Kolandaivel P (2005) Red-shifted and improper blue-shifted hydrogen bonds in dimethyl ether (DME)n (n = 1–4) and hydrated (DME)n (n = 1–4) clusters: a theoretical study. J Mol Struct 734:157–169

    CAS  Google Scholar 

  75. Koch U, Popelier PLA (1995) Characterization of C-H–O hydrogen bonds on the basis of the charge density. J Phys Chem 99:9747–9754

    CAS  Google Scholar 

  76. Popelier PLA (1998) Characterization of a dihydrogen bond on the basis of the electron density. J Phys Chem A 102:1873–1878

    CAS  Google Scholar 

  77. Gálvez O, Gómez PC, Pacio LF (2003) Variation with the intermolecular distance of properties dependent on the electron density in cyclic dimers with two hydrogen bonds. J Chem Phys 118:4878–4895

    Google Scholar 

  78. Domagala M, Grabowski SJ (2005) CH…N and CH…S hydrogen bonds. Influence of hybridization on their strength. J Phys Chem A 109:5683–5688

    CAS  PubMed  Google Scholar 

  79. Raissi H, Yoosefian M, Moshfeghi E, Farzad F (2012) Theoretical study on β-aminoacroleine; density functional theory, atoms in molecules theory and natural bond orbitals studies. J Chem Sci 124:731–739

    CAS  Google Scholar 

  80. Raissi H, Yoosefian M, Khoshkhou S (2012) Conformational study of the (z)-[(2-iminoethylidone) silyl] amine at the MP2, DFT and G2MP2 levels. Comput Theor Chem 983:1–6

    CAS  Google Scholar 

  81. Raissi H, Yoosefian M, Zamani S, Farzad F (2012) Conformational study, molecular structure, and S···H–N, S–H···N intramolecular hydrogen bond in thioformyl-3-aminoacrylaldehyde. J Sulfur Chem 33:75–85

    CAS  Google Scholar 

  82. Raissi H, Jalbout A, Yoosefian M, Fazli M, Nowroozi A, Shahinin M, De Leon A (2010) Intramolecular hydrogen bonding in structural conformers of 2-amino methylene malonaldehyde: AIM and NBO studies. Int J Quantum Chem 110:821–830

    CAS  Google Scholar 

  83. Fukui K, Yonezawa T, Shingu H (1952) A molecular orbital theory of reactivity in aromatic hydrocarbons. J Chem Phys 20:722–725

    CAS  Google Scholar 

  84. Saikia N, Deka RC (2010) Theoretical study on pyrazinamide adsorption onto covalently functionalized (5,5) metallic single-walled carbon nanotube. Chem Phys Lett 500:65–70

    CAS  Google Scholar 

  85. Fukui K (1982) Role of Frontier orbitals in chemical reactions. Science 218:747–754

    CAS  PubMed  Google Scholar 

  86. Sajan D, Lakshmi KU, Erdogdu Y, Joe IH (2011) Molecular structure and vibrational spectra of 2,6-bis(benzylidene)cyclohexanone: a density functional theoretical study. Spectrochim Acta 78:113–121

    CAS  Google Scholar 

  87. Ibrahim M, Mahmoud AA (2009) Computational notes on the reactivity of some functional groups. J Comput Theor Nanosci 6:1523–1526

    CAS  Google Scholar 

  88. Ibrahim M, El-Haes H (2005) Computational spectroscopic study of copper, cadmium, lead and zinc interactions in the environment. Int J Environ Pollut 23:417–424

    CAS  Google Scholar 

  89. Chattaraj PK, Poddar A (1999) Molecular reactivity in the ground and excited electronic states through density-dependent local and global reactivity parameters. J Phys Chem A 103:8691–8699

    CAS  Google Scholar 

  90. Pearson RG (1997) Chemical hardness-applications from molecules to solids. VCH-Wiley, Weinheim

    Google Scholar 

  91. Parr RG, Szentpály LV, Liu S (1999) Electrophilicity index. J Am Chem Soc 121:1922–1924

    CAS  Google Scholar 

  92. Sen KD, Jorgensen CK (1987) Electronegativity, structure and bonding. Springer, New York

    Google Scholar 

  93. Koopmans T (1933) Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den einzelnen Elektronen eines atoms. Physica 1:104–113

    CAS  Google Scholar 

  94. Pérez P, Domingo LR, Aizman A, Contreras R (2007) The electrophilicity index in organic chemistry. In: Theoretical aspects of chemical reactivity. Elsevier, New York

  95. Domingo LR, Ríos-Gutiérrez M, Pérez P (2016) Applications of the conceptual density functional theory indices to organic chemistry reactivity. Molecules 21:748-1–748-22

    Google Scholar 

  96. Domingo LR, Aurell MJ, Pérez P, Contreras R (2002) Quantitative characterization of the global electrophilicity power of common diene/dienophile pairs in Diels–Alder reactions. Tetrahedron 58:4417–4423

    CAS  Google Scholar 

Download references

Acknowledgements

The support of this work by Vali-e-Asr University of Rafsanjan is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marziyeh Mohammadi.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi, M., Khanmohammadi, A. Theoretical investigation on the non-covalent interactions of acetaminophen complex in different solvents: study of the enhancing effect of the cation–π interaction on the intramolecular hydrogen bond. Theor Chem Acc 139, 141 (2020). https://doi.org/10.1007/s00214-020-02650-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-020-02650-8

Keywords

Navigation