Skip to main content

Advertisement

Log in

GC–MS analysis, pharmacokinetic properties, molecular docking and dynamics simulation of bioactives from Curcumis maderaspatanus to target oral cancer

  • Original Research
  • Published:
In Silico Pharmacology Aims and scope Submit manuscript

Abstract

Oral cancer (OC) which is the most predominant malignant epithelial neoplasm in the oral cavity, is the 8th commonest type of cancer globally. Natural products are excellent sources of functionally active compounds and essential nutrients that play an important role in cancer therapeutics. Using the structure-based virtual screening, drug-likeness, toxicity, and molecular dynamics simulation, the current study focused on the evaluation of anticancer activity of bioactive compounds from Curcumis maderaspatanus. AURKA, CDK1, and VEGFR-2 proteins which play a crucial role in the development and progression of oral cancer was selected as targets and 216 phytochemicals along with a known reference inhibitor were docked against these target proteins. Based on the docking score, it was found that phytochemicals namely 3-Benzoyl-2,4(1H,3H)-Pyrimidinedione (− 8.0 kcal/mol), 1-Cyclohexylethanol, trifluoroacetate (− 6.3 kcal/mol), and Alpha-Curcumene (− 8.9 kcal/mol) interacts with AURKA, CDK1, and VEGFR-2 with highest binding affinity. The molecular dynamics simulation demonstrated that the best docked complexes exhibited excellent structural stability in terms of RMSD, RSMF, SASA and Rg for a period of 100 ns. Altogether, our computational analysis reveals that the bioactives from C. maderaspatanus could emerge as efficacious drug candidates in oral cancer therapy.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data will be available upon request.

References

  • Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B et al (2015) GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2:19–25

    Article  ADS  Google Scholar 

  • Araki-Maeda H, Kawabe M, Omori Y, Yamanegi K, Yoshida K, Yoshikawa K et al (2022) Establishment of an oral squamous cell carcinoma cell line expressing vascular endothelial growth factor a and its two receptors. J Dent Sci 17:1471–1479

    Article  PubMed  PubMed Central  Google Scholar 

  • Bavetsias V, Large JM, Sun C, Bouloc N, Kosmopoulou M, Matteucci M et al (2010) Imidazo[4,5-b]pyridine derivatives as inhibitors of Aurora kinases: lead optimization studies toward the identification of an orally bioavailable preclinical development candidate. J Med Chem 53:5213–5228

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Zhang F-H, Chen Q-E, Wang Y-Y, Wang Y-L, He J-C et al (2015) The clinical significance of CDK1 expression in oral squamous cell carcinoma. Med Oral Patol Oral Cir Bucal 20:e7-12

    Article  PubMed  Google Scholar 

  • Choudhari AS, Mandave PC, Deshpande M, Ranjekar P, Prakash O (2019) Phytochemicals in cancer treatment: from preclinical studies to clinical practice. Front Pharmacol 10:1614

    Article  CAS  PubMed  Google Scholar 

  • Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7:1–13

    Article  Google Scholar 

  • Dawei H, Honggang D, Qian W (2018) AURKA contributes to the progression of oral squamous cell carcinoma (OSCC) through modulating epithelial-to-mesenchymal transition (EMT) and apoptosis via the regulation of ROS. Biochem Biophys Res Commun 507:83–90

    Article  PubMed  Google Scholar 

  • Debasish S, Tripti S (2021) Molecular docking studies of 3-substituted 4-phenylamino coumarin derivatives as chemokine receptor inhibitor. J Adv Pharm Technol Res 14:943–948

    Article  Google Scholar 

  • Du R, Huang C, Liu K, Li X, Dong Z (2021) Targeting AURKA in cancer: molecular mechanisms and opportunities for cancer therapy. Mol Cancer 20:1–27

    Article  Google Scholar 

  • Eberhardt J, Santos-Martins D, Tillack AF, Forli S (2021) AutoDock Vina 1.2.0: new docking methods, expanded force field, and python bindings. J Chem Inf Model 61:3891–3898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferlay J, Colombet M, Soerjomataram I, Parkin DM, Piñeros M, Znaor A et al (2021) Cancer statistics for the year 2020: an overview. Int J Cancer 149:778–789

    Article  CAS  Google Scholar 

  • Fu H, Zhao D, Sun L, Huang Y, Ma X (2022) Identification of autophagy-related biomarker and analysis of immune infiltrates in oral carcinoma. J Clin Lab Anal 36:e24417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghafouri-Fard S, Khoshbakht T, Hussen BM, Dong P, Gassler N, Taheri M et al (2022) A review on the role of cyclin dependent kinases in cancers. Cancer Cell Int 22:1–69

    Google Scholar 

  • Gupta N, Gupta R, Acharya AK, Patthi B, Goud V, Reddy S et al (2016) Changing trends in oral cancer - a global scenario. Nepal J Epidemiol 6:613–619

    Article  PubMed  PubMed Central  Google Scholar 

  • Islami F, Ward EM, Sung H, Cronin KA, Tangka FKL, Sherman RL et al (2021) Annual report to the nation on the status of cancer, part 1: national cancer statistics. J Natl Cancer Inst 113:1648–1669

    Article  PubMed  PubMed Central  Google Scholar 

  • Jain S, Dwivedi J, Jain PK, Satpathy S, Patra A (2016) Medicinal plants for treatment of cancer: a brief review. Pharmacogn J 8:87–102

    Article  CAS  Google Scholar 

  • Jin LJ, Lamster IB, Greenspan JS, Pitts NB, Scully C, Warnakulasuriya S (2016) Global burden of oral diseases: emerging concepts, management and interplay with systemic health. Oral Dis 22:609–619

    Article  CAS  PubMed  Google Scholar 

  • Malumbres M, Barbacid M (2009) Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer 9:153–166

    Article  CAS  PubMed  Google Scholar 

  • Modi SJ, Kulkarni VM (2019) Vascular endothelial growth factor receptor (VEGFR-2)/KDR inhibitors: medicinal chemistry perspective. Med Drug Discov 2:100009

    Article  Google Scholar 

  • Mou PK, Yang EJ, Shi C, Ren G, Tao S, Shim JS (2021) Aurora kinase A, a synthetic lethal target for precision cancer medicine. Exp Mol Med 53:835–847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oguro Y, Miyamoto N, Okada K, Takagi T, Iwata H, Awazu Y, Miki H, Hori A, Kamiyama K, Imamura S (2010) Design, synthesis, and evaluation of 5-methyl-4-phenoxy-5H-pyrrolo[3,2-d]pyrimidine derivatives: novel VEGFR2 kinase inhibitors binding to inactive kinase conformation. Bioorg Med Chem 18:7260–7273

    Article  CAS  PubMed  Google Scholar 

  • Pogaku V, Gangarapu K, Basavoju S, Tatapudi KK, Katragadda SB (2019) Design, synthesis, molecular modelling, ADME prediction and anti-hyperglycemic evaluation of new pyrazole-triazolopyrimidine hybrids as potent α-glucosidase inhibitors. Bioorg Chem 93:103307

    Article  PubMed  Google Scholar 

  • Prakash S, Radha, Kumar M, Kumari N, Thakur M, Rathour S et al (2021) Plant-based antioxidant extracts and compounds in the management of oral cancer. Antioxidants (Basel). https://doi.org/10.3390/antiox10091358

    Article  PubMed  Google Scholar 

  • Rydén L, Linderholm B, Nielsen NH, Emdin S, Jönsson P-E, Landberg G (2003) Tumor specific VEGF-A and VEGFR2/KDR protein are co-expressed in breast cancer. Breast Cancer Res Treat 82:147–154

    Article  PubMed  Google Scholar 

  • Salentin S, Schreiber S, Haupt VJ, Adasme MF, Schroeder M (2015) PLIP: fully automated protein-ligand interaction profiler. Nucleic Acids Res 43:W443–W447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seto T, Higashiyama M, Funai H, Imamura F, Uematsu K, Seki N et al (2006) Prognostic value of expression of vascular endothelial growth factor and its flt-1 and KDR receptors in stage I non-small-cell lung cancer. Lung Cancer 53:91–96

    Article  PubMed  Google Scholar 

  • Shafiu S, Edache E, Sani U, Abatyough M (2017) Docking and virtual screening studies of tetraketone derivatives as tyrosine kinase (EGFR) inhibitors: a rational approach to anti-fungi drug design. 2017 [cited 6 Jul 2023]. Available: https://www.semanticscholar.org/paper/Docking-and-Virtual-Screening-Studies-of-as-Kinase-Shafiu-Edache/4fba90652c82f18eeb9b9dcde441337c0a6628cd#citing-papers

  • Sofi S, Mehraj U, Qayoom H, Aisha S, Almilaibary A, Alkhanani M et al (2022) Targeting cyclin-dependent kinase 1 (CDK1) in cancer: molecular docking and dynamic simulations of potential CDK1 inhibitors. Med Oncol 39:133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sumalapao DE, Villarante NR, Agapito JD, Asaad AS, Gloriani NG (2020) Topological polar surface area, molecular weight, and rotatable bond count account for the variations in the inhibitory potency of antimycotics against Microsporum canis. J Pure Appl Microbiol 14(1):247–254

    Article  CAS  Google Scholar 

  • Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wood DJ, Korolchuk S, Tatum NJ, Wang L-Z, Endicott JA, Noble MEM et al (2019) Differences in the conformational energy landscape of CDK1 and CDK2 suggest a mechanism for achieving selective CDK inhibition. Cell Chem Biol 26:121-130.e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

DST SERB, Government of India, EEQ/2022/001047.

Author information

Authors and Affiliations

Authors

Contributions

MM conceived the idea. RSR and DS executed the computational work. MM and RSR jointly wrote the paper.

Corresponding author

Correspondence to Monisha Mohan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 163 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, R.S., Saravanan, D. & Mohan, M. GC–MS analysis, pharmacokinetic properties, molecular docking and dynamics simulation of bioactives from Curcumis maderaspatanus to target oral cancer. In Silico Pharmacol. 12, 16 (2024). https://doi.org/10.1007/s40203-023-00177-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40203-023-00177-x

Keywords

Navigation