Skip to main content

Advertisement

Log in

A therapeutic approach towards microRNA29 family in vascular diabetic complications: A boon or curse?

  • Review Article
  • Published:
Journal of Diabetes & Metabolic Disorders Aims and scope Submit manuscript

Abstract

Diabetes Mellitus (DM) is one of the major metabolic disorders and its severity leads to death. Enhancement in hyperglycaemic conditions of DM gives rise to endothelial impairment in small and large blood vessels contributing towards microvascular and macrovascular complications respectively. The pathogenesis of diabetic complications is associated with interruption of various signal transduction pathways due to epigenetic modifications such as aberrant histone modifications, DNA methylation and expression of miRNAs along with the long non-coding RNAs (lncRNAs). Amongst these epigenetic alterations, modulated expressions of miRNAs confer to apoptosis and endothelial dysfunction of organs that gives rise to vascular complications. In this review, we principally focussed on physiological role of miR29 family in DM and have discussed crosstalk between miR29 family and numerous genes involved in signal transduction pathways of Diabetic vascular complications. Incidences of diabetic retinopathy exploiting the role of miR29 in regulation of EMT process, differential expression patterns of miR29 and promising therapeutic role of miR29 have been discussed. We have summarised the therapeutic role of miR29 in podocyte impairment and how miR29 regulates the expressions of profibrotic, inflammatory and ECM encoding genes in renal fibrosis under diabetic conditions. We have also highlighted impact of miR29 expression patterns in cardiac angiopathy, cardiomyocyte’s apoptosis and cardiac fibrosis. Additionally, we have also presented the contradictory actions of miR29 family in amelioration as well as in enhancement of diabetic complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Liang M, Liu Y, Mladinov D, Cowley AW, Trivedi H, Fang Y, et al. MicroRNA: a new frontier in kidney and blood pressure research. Am J Physiol Ren Physiol. 2009;297(3):F553–F8.

    Article  CAS  Google Scholar 

  2. Fu X, Han Y, Wu Y, Zhu X, Lu X, Mao F, et al. Prognostic role of microRNA-21 in various carcinomas: a systematic review and meta-analysis. Eur J Clin Investig. 2011;41(11):1245–53.

    Article  CAS  Google Scholar 

  3. Zhang C. MicroRNA-145 in vascular smooth muscle cell biology: a new therapeutic target for vascular disease. Cell Cycle. 2009;8(21):3469–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chen F, Hu SJ. Effect of microRNA-34a in cell cycle, differentiation, and apoptosis: A review. J Biochem Mol Toxicol. 2012;26(2):79–86.

    Article  CAS  PubMed  Google Scholar 

  5. Zhang C, Cheng Y, Liu X, Yang J. MicroRNA-145 in vascular smooth muscle cell biology and vascular disease. Am Heart Assoc. 2009.

  6. Bader AG, Brown D, Winkler M. The promise of microRNA replacement therapy. Cancer Res. 2010;70(18):7027–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kriegel AJ, Liu Y, Fang Y, Ding X, Liang M. The miR-29 family: genomics, cell biology, and relevance to renal and cardiovascular injury. Physiol Genomics. 2012;44(4):237–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Reddy MA, Zhang E, Natarajan R. Epigenetic mechanisms in diabetic complications and metabolic memory. Diabetologia. 2015;58(3):443–55.

    Article  CAS  PubMed  Google Scholar 

  9. Khullar M, Cheema BS, Raut SK. Emerging evidence of epigenetic modifications in vascular complication of diabetes. Front Endocrinol. 2017;8:237.

    Article  Google Scholar 

  10. Zhang Y, Sun X, Icli B, Feinberg MW. Emerging roles for MicroRNAs in diabetic microvascular disease: novel targets for therapy. Endocr Rev. 2017;38(2):145–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Slusarz A, Pulakat L. The two faces of miR-29. J Cardiovasc Med (Hagerstown). 2015;16(7):480–90.

    Article  CAS  Google Scholar 

  12. Jiang H, Zhang G, Wu J-H, Jiang C-P. Diverse roles of miR-29 in cancer. Oncol Rep. 2014;31(4):1509–16.

    Article  CAS  PubMed  Google Scholar 

  13. Fiserova B, Kubiczkova L, Sedlarikova L, Hajek R, Sevcikova S. The miR-29 family in hematological malignancies. Biomed Papers. 2015;159(2):184–91.

    Article  Google Scholar 

  14. Kollinerova S, Vassanelli S, Modriansky M. The role of miR-29 family members in malignant hematopoiesis. Biomed Papers. 2014;158(4):489–501.

    Article  Google Scholar 

  15. Fernandez-Valverde SL, Taft RJ, Mattick JS. MicroRNAs in β-cell biology, insulin resistance, diabetes and its complications. Diabetes. 2011;60(7):1825–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kong L, Zhu J, Han W, Jiang X, Xu M, Zhao Y, et al. Significance of serum microRNAs in pre-diabetes and newly diagnosed type 2 diabetes: a clinical study. Acta Diabetol. 2011;48(1):61–9.

    Article  CAS  PubMed  Google Scholar 

  17. Zhao E, Keller MP, Rabaglia ME, Oler AT, Stapleton DS, Schueler KL, et al. Obesity and genetics regulate microRNAs in islets, liver, and adipose of diabetic mice. Mamm Genome. 2009;20(8):476–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pandey AK, Verma G, Vig S, Srivastava S, Srivastava AK, Datta M. miR-29a levels are elevated in the db/db mice liver and its overexpression leads to attenuation of insulin action on PEPCK gene expression in HepG2 cells. Mol Cell Endocrinol. 2011;332(1–2):125–33.

    Article  CAS  PubMed  Google Scholar 

  19. Pullen TJ, da Silva Xavier G, Kelsey G, Rutter GA. miR-29a and miR-29b contribute to pancreatic β-cell-specific silencing of monocarboxylate transporter 1 (Mct1). Mol Cell Biol. 2011;31(15):3182–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kurtz CL, Peck BC, Fannin EE, Beysen C, Miao J, Landstreet SR, et al. MicroRNA-29 fine-tunes the expression of key FOXA2-activated lipid metabolism genes and is dysregulated in animal models of insulin resistance and diabetes. Diabetes. 2014:DB_131015.

  21. Nicholas LM, Rattanatray L, MacLaughlin SM, Ozanne SE, Kleemann DO, Walker SK, et al. Differential effects of maternal obesity and weight loss in the periconceptional period on the epigenetic regulation of hepatic insulin-signaling pathways in the offspring. FASEB J. 2013;27(9):3786–96.

    Article  CAS  PubMed  Google Scholar 

  22. C Melnik B. The pathogenic role of persistent milk signaling in mTORC1-and milk-microRNA-driven type 2 diabetes mellitus. Curr Diabetes Rev. 2015;11(1):46–62.

    Article  CAS  Google Scholar 

  23. Bagge A, Clausen TR, Larsen S, Ladefoged M, Rosenstierne MW, Larsen L, et al. MicroRNA-29a is up-regulated in beta-cells by glucose and decreases glucose-stimulated insulin secretion. Biochem Biophys Res Commun. 2012;426(2):266–72.

    Article  CAS  PubMed  Google Scholar 

  24. Yang W-M, Jeong H-J, Park S-Y, Lee W. Induction of miR-29a by saturated fatty acids impairs insulin signaling and glucose uptake through translational repression of IRS-1 in myocytes. FEBS Lett. 2014;588(13):2170–6.

    Article  CAS  PubMed  Google Scholar 

  25. Zhou Y, Gu P, Shi W, Li J, Hao Q, Cao X, et al. MicroRNA-29a induces insulin resistance by targeting PPARδ in skeletal muscle cells. Int J Mol Med. 2016;37(4):931–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Forbes JM, Fotheringham AK. Vascular complications in diabetes: old messages, new thoughts. Diabetologia. 2017:1–10.

  27. Ighodaro O, Adeosun A. Vascular complications in diabetes mellitus. Kidney. 4:16.

  28. Chawla A, Chawla R, Jaggi S. Microvasular and macrovascular complications in diabetes mellitus: distinct or continuum? Indian J Endocrinol Metab. 2016;20(4):546–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang L-Q, Cui H, Wang L, Fang X, Su S. Role of microRNA-29a in the development of diabetic retinopathy by targeting AGT gene in a rat model. Exp Mol Pathol. 2017;102(2):296–302.

    Article  CAS  PubMed  Google Scholar 

  30. Tom L, Davoudi S, Sobrin L. Genetic epidemiology of diabetic retinopathy. Ann Eye Sci. 2017;2(8).

  31. Kovacs B, Lumayag S, Cowan C, Xu S. MicroRNAs in early diabetic retinopathy in streptozotocin-induced diabetic rats. Invest Ophthalmol Vis Sci. 2011;52(7):4402–9.

    Article  CAS  PubMed  Google Scholar 

  32. Mastropasqua R, Toto L, Cipollone F, Santovito D, Carpineto P, Mastropasqua L. Role of microRNAs in the modulation of diabetic retinopathy. Prog Retin Eye Res. 2014;43:92–107.

    Article  CAS  PubMed  Google Scholar 

  33. Wu J-h, Gao Y, A-j R, Zhao S-h, Zhong M, Y-j P, et al. Altered microRNA expression profiles in retinas with diabetic retinopathy. Ophthalmic Res. 2012;47(4):195–201.

    Article  CAS  PubMed  Google Scholar 

  34. Gong Q, Su G. Roles of microRNAs and Long noncoding RNAs in the progression of diabetic retinopathy. Biosci Rep. 2017;37:BSR20171157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gong Q, Jn X, Liu Y, Li Y, Su G. Differentially expressed MicroRNAs in the development of early diabetic retinopathy. J Diabetes Res. 2017;2017:1–10.

    Google Scholar 

  36. Li M, Li H, Liu X, Xu D, Wang F. MicroRNA-29b regulates TGF-β1-mediated epithelial–mesenchymal transition of retinal pigment epithelial cells by targeting AKT2. Exp Cell Res. 2016;345(2):115–24.

    Article  CAS  PubMed  Google Scholar 

  37. Chen X, Ye S, Xiao W, Luo L, Liu Y. Differentially expressed microRNAs in TGFβ2-induced epithelial-mesenchymal transition in retinal pigment epithelium cells. Int J Mol Med. 2014;33(5):1195–200.

    Article  CAS  PubMed  Google Scholar 

  38. Yang Y, Zhang N, Crombruggen K, Hu G, Hong S, Bachert C. Transforming growth factor-beta1 in inflammatory airway disease: a key for understanding inflammation and remodeling. Allergy. 2012;67(10):1193–202.

    Article  CAS  PubMed  Google Scholar 

  39. Wang B, Komers R, Carew R, Winbanks CE, Xu B, Herman-Edelstein M, et al. Suppression of microRNA-29 expression by TGF-β1 promotes collagen expression and renal fibrosis. J Am Soc Nephrol. 2012;23(2):252–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li H, Wang H, Wang F, Gu Q, Xu X. Snail involves in the transforming growth factor β1-mediated epithelial-mesenchymal transition of retinal pigment epithelial cells. PLoS One. 2011;6(8):e23322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hirota K, Keino H, Inoue M, Ishida H, Hirakata A. Comparisons of microRNA expression profiles in vitreous humor between eyes with macular hole and eyes with proliferative diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol. 2015;253(3):335–42.

    Article  CAS  PubMed  Google Scholar 

  42. Lin X, Zhou X, Liu D, Yun L, Zhang L, Chen X, et al. MicroRNA-29 regulates high-glucose-induced apoptosis in human retinal pigment epithelial cells through PTEN. In Vitro Cell Dev Biol Anim. 2016;52(4):419–26.

    Article  CAS  PubMed  Google Scholar 

  43. Wang M, Zhang X, Wang T. MicroRNA-486 down-regulates p53 expression in the diabetic retinopathy. Int J Clin Exp Pathol. 2016;9(5):5034–44.

    CAS  Google Scholar 

  44. Jia L-F, Huang Y-P, Zheng Y-F, Ming-Yue L, Wei S-B, Meng Z, et al. miR-29b suppresses proliferation, migration, and invasion of tongue squamous cell carcinoma through PTEN–AKT signaling pathway by targeting Sp1. Oral Oncol. 2014;50(11):1062–71.

    Article  CAS  PubMed  Google Scholar 

  45. Yu J, Luo H, Li N, Duan X. Suppression of type I collagen expression by miR-29b via PI3K, Akt, and Sp1 pathway, part ii: an in vivo investigation. Invest Ophthalmol Vis Sci. 2015;56(10):6019–28.

    Article  CAS  PubMed  Google Scholar 

  46. Papait R, Kunderfranco P, Stirparo GG, Latronico MV, Condorelli G. Long noncoding RNA: a new player of heart failure? J Cardiovasc Transl Res. 2013;6(6):876–83.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Sun X, Wong D. Long non-coding RNA-mediated regulation of glucose homeostasis and diabetes. Am J cardiovasc Dis. 2016;6(2):17–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang J, Chen M, Chen J, Lin S, Cai D, Chen C, et al. Long non-coding RNA MIAT acts as a biomarker in diabetic retinopathy by absorbing miR-29b and regulating cell apoptosis. Biosci Rep. 2017;37(2):BSR20170036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wilcock DM, Morgan D, Gordon MN, Taylor TL, Ridnour LA, Wink DA, et al. Activation of matrix metalloproteinases following anti-Aβ immunotherapy; implications for microhemorrhage occurrence. J Neuroinflammation. 2011;8(1):115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Cai J, Yin G, Lin B, Wang X, Liu X, Chen X, et al. Roles of NFκB-miR-29s-MMP-2 circuitry in experimental choroidal neovascularization. J Neuroinflammation. 2014;11(1):88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chen X-K, Ouyang L-J, Yin Z-Q, Xia Y-Y, Chen X-R, Shi H, et al. Effects of microRNA-29a on retinopathy of prematurity by targeting AGT in a mouse model. Am J Transl Res. 2017;9(2):791.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Simpson K, Wonnacott A, Fraser DJ, Bowen T. MicroRNAs in diabetic nephropathy: from biomarkers to therapy. Curr Diab Rep. 2016;16(3):35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kato M, Natarajan R. MicroRNAs in diabetic nephropathy: functions, biomarkers, and therapeutic targets. Ann N Y Acad Sci. 2015;1353(1):72–88.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Kato M, Natarajan R. Diabetic nephropathy [mdash] emerging epigenetic mechanisms. Nat Rev Nephrol. 2014;10(9):517–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yuen DA, Stead BE, Zhang Y, White KE, Kabir MG, Thai K, et al. eNOS deficiency predisposes podocytes to injury in diabetes. J Am Soc Nephrol. 2012;23(11):1810–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Qin W, Chung AC, Huang XR, Meng X-M, Hui DS, Yu C-M, et al. TGF-β/Smad3 signaling promotes renal fibrosis by inhibiting miR-29. J Am Soc Nephrol. 2011;22(8):1462–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mihaylova MM, Vasquez DS, Ravnskjaer K, Denechaud P-D, Ruth TY, Alvarez JG, et al. Class IIa histone deacetylases are hormone-activated regulators of FOXO and mammalian glucose homeostasis. Cell. 2011;145(4):607–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lin C-L, Lee P-H, Hsu Y-C, Lei C-C, Ko J-Y, Chuang P-C, et al. MicroRNA-29a promotion of nephrin acetylation ameliorates hyperglycemia-induced podocyte dysfunction. J Am Soc Nephrol. 2014;25(8):1698–709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. George B, Verma R, Soofi AA, Garg P, Zhang J, Park T-J, et al. Crk1/2-dependent signaling is necessary for podocyte foot process spreading in mouse models of glomerular disease. J Clin Invest. 2012;122(2):674–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Inoki K, Mori H, Wang J, Suzuki T, Hong S, Yoshida S, et al. mTORC1 activation in podocytes is a critical step in the development of diabetic nephropathy in mice. J Clin Invest. 2011;121(6):2181–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Jia Y, Zheng Z, Wang Y, Zhou Q, Cai W, Jia W, et al. SIRT1 is a regulator in high glucose-induced inflammatory response in RAW264. 7 cells. PLoS One. 2015;10(3):e0120849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ceolotto G, De Kreutzenberg SV, Cattelan A, Fabricio AS, Squarcina E, Gion M, et al. Sirtuin 1 stabilization by HuR represses TNF-α-and glucose-induced E-selectin release and endothelial cell adhesiveness in vitro: relevance to human metabolic syndrome. Clin Sci. 2014;127(7):449–61.

    Article  CAS  PubMed  Google Scholar 

  63. Hah Y-S, Cheon Y-H, Lim HS, Cho HY, Park B-H, Ka S-O, et al. Myeloid deletion of SIRT1 aggravates serum transfer arthritis in mice via nuclear factor-κB activation. PLoS One. 2014;9(2):e87733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mott JL, Kurita S, Cazanave SC, Bronk SF, Werneburg NW, Fernandez-Zapico ME. Transcriptional suppression of mir-29b-1/mir-29a promoter by c-Myc, hedgehog, and NF-kappaB. J Cell Biochem. 2010;110(5):1155–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Li N, Cui J, Duan X, Chen H, Fan F. Suppression of type I collagen expression by miR-29b via PI3K, Akt, and Sp1 pathway in human Tenon's fibroblasts. Invest Ophthalmol Vis Sci. 2012;53(3):1670–8.

    Article  CAS  PubMed  Google Scholar 

  66. Chen H-Y, Zhong X, Huang XR, Meng X-M, You Y, Chung AC, et al. MicroRNA-29b inhibits diabetic nephropathy in db/db mice. Mol Ther. 2014;22(4):842–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yoh K, Hirayama A, Ishizaki K, Yamada A, Takeuchi M, Si Y, et al. Hyperglycemia induces oxidative and nitrosative stress and increases renal functional impairment in Nrf2-deficient mice. Genes Cells. 2008;13(11):1159–70.

    CAS  PubMed  Google Scholar 

  68. Vriend J, Reiter RJ. The Keap1-Nrf2-antioxidant response element pathway: a review of its regulation by melatonin and the proteasome. Mol Cell Endocrinol. 2015;401:213–20.

    Article  CAS  PubMed  Google Scholar 

  69. Zhou L, D-y X, W-g S, Shen L, G-y L, Yin X, et al. High glucose induces renal tubular epithelial injury via Sirt1/NF-kappaB/microR-29/Keap1 signal pathway. J Transl Med. 2015;13(1):352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ulrich V, Rotllan N, Araldi E, Luciano A, Skroblin P, Abonnenc M, et al. Chronic miR-29 antagonism promotes favorable plaque remodeling in atherosclerotic mice. EMBO Mol Med. 2016:e201506031.

  71. Ajila V, Shetty H, Babu S, Shetty V, Hegde S. Human papilloma virus associated squamous cell carcinoma of the head and neck. J Sex Transm Dis. 2015;2015:1–5.

    Article  Google Scholar 

  72. Liu Y, Taylor NE, Lu L, Cowley AW, Ferreri NR, Yeo NC, et al. Renal medullary MicroRNAs in dahl salt-sensitive rats. Hypertension. 2010;55(4):974–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhou L, Wang L, Lu L, Jiang P, Sun H, Wang H. Inhibition of miR-29 by TGF-beta-Smad3 signaling through dual mechanisms promotes transdifferentiation of mouse myoblasts into myofibroblasts. PLoS One. 2012;7(3):e33766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Poncelet A-C, Schnaper HW. Sp1 and Smad proteins cooperate to mediate transforming growth factor-β1-induced α2 (I) collagen expression in human glomerular mesangial cells. J Biol Chem. 2001;276(10):6983–92.

    Article  CAS  PubMed  Google Scholar 

  75. He Y, Huang C, Lin X, Li J. MicroRNA-29 family, a crucial therapeutic target for fibrosis diseases. Biochimie. 2013;95(7):1355–9.

    Article  CAS  PubMed  Google Scholar 

  76. Shiomi T, Lemaître V, D'armiento J, Okada Y. Matrix metalloproteinases, a disintegrin and metalloproteinases, and a disintegrin and metalloproteinases with thrombospondin motifs in non-neoplastic diseases. Pathol Int. 2010;60(7):477–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ramdas V, McBride M, Denby L, Baker AH. Canonical transforming growth factor-β signaling regulates disintegrin metalloprotease expression in experimental renal fibrosis via miR-29. Am J Pathol. 2013;183(6):1885–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Fabbri M, Garzon R, Cimmino A, Liu Z, Zanesi N, Callegari E, et al. MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci. 2007;104(40):15805–10.

    Article  PubMed  Google Scholar 

  79. Cordero OJ, Salgado FJ, Nogueira M. On the origin of serum CD26 and its altered concentration in cancer patients. Cancer Immunol Immunother. 2009;58(11):1723–47.

    Article  CAS  PubMed  Google Scholar 

  80. Shi S, Koya D, Kanasaki K. Dipeptidyl peptidase-4 and kidney fibrosis in diabetes. Fibrogenesis Tissue Repair. 2016;9(1):1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Cushing L, Kuang PP, Qian J, Shao F, Wu J, Little F, et al. miR-29 is a major regulator of genes associated with pulmonary fibrosis. Am J Respir Cell Mol Biol. 2011;45(2):287–94.

    Article  CAS  PubMed  Google Scholar 

  82. Hsu Y-C, Chang P-J, Ho C, Huang Y-T, Shih Y-H, Wang C-J, et al. Protective effects of miR-29a on diabetic glomerular dysfunction by modulation of DKK1/Wnt/β-catenin signaling. Sci Rep. 2016;6.

  83. Lin C-L, Wang J-Y, Huang Y-T, Kuo Y-H, Surendran K, Wang F-S. Wnt/β-catenin signaling modulates survival of high glucose–stressed mesangial cells. J Am Soc Nephrol. 2006;17(10):2812–20.

    Article  CAS  PubMed  Google Scholar 

  84. Lin C-L, Wang J-Y, Ko J-Y, Huang Y-T, Kuo Y-H, Wang F-S. Dickkopf-1 promotes hyperglycemia–induced accumulation of mesangial matrix and renal dysfunction. J Am Soc Nephrol. 2010;21(1):124–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Chien H-Y, Chen C-Y, Chiu Y-H, Lin Y-C, Li W-C. Differential microRNA profiles predict diabetic nephropathy progression in Taiwan. Int J Med Sci. 2016;13(6):457–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Liu F, Guo J, Zhang Q, Liu D, Wen L, Yang Y, et al. The expression of Tristetraprolin and its relationship with urinary proteins in patients with diabetic nephropathy. PLoS One. 2015;10(10):e0141471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Patial S, Blackshear PJ. Tristetraprolin as a therapeutic target in inflammatory disease. Trends Pharmacol Sci. 2016;37(10):811–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Guo J, Li J, Zhao J, Yang S, Wang L, Cheng G, et al. MiRNA-29c regulates the expression of inflammatory cytokines in diabetic nephropathy by targeting tristetraprolin. Sci Rep. 2017;7.

  89. Long J, Wang Y, Wang W, Chang BH, Danesh FR. MicroRNA-29c is a signature microRNA under high glucose conditions that targets Sprouty homolog 1, and its in vivo knockdown prevents progression of diabetic nephropathy. J Biol Chem. 2011;286(13):11837–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Figueira M, Monnerat-Cahli G, Medei E, Carvalho A, Morales M, Lamas M, et al. MicroRNAs: potential therapeutic targets in diabetic complications of the cardiovascular and renal systems. Acta Physiol. 2014;211(3):491–500.

    Article  CAS  Google Scholar 

  91. Papageorgiou N, Tslamandris S, Giolis A, Tousoulis D. MicroRNAs in cardiovascular disease: perspectives and reality. Cardiol Rev. 2016;24(3):110–8.

    Article  PubMed  Google Scholar 

  92. Samanta S, Balasubramanian S, Rajasingh S, Patel U, Dhanasekaran A, Dawn B, et al. MicroRNA: A new therapeutic strategy for cardiovascular diseases. Trends Cardiovasc Med. 2016;26(5):407–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Heid J, Cencioni C, Ripa R, Baumgart M, Atlante S, Milano G, et al. Age-dependent increase of oxidative stress regulates microRNA-29 family preserving cardiac health. Sci Rep. 2017;7(1):16839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Abonnenc M, Nabeebaccus AA, Mayr U, Barallobre-Barreiro J, Dong X, Cuello F, et al. Extracellular matrix secretion by cardiac FibroblastsNovelty and significance. Circ Res. 2013;113(10):1138–47.

    Article  CAS  PubMed  Google Scholar 

  95. Deng Z, He Y, Yang X, Shi H, Shi A, Lu L, et al. MicroRNA-29: A crucial player in fibrotic disease. Mol Diagn Ther. 2017:1–10.

  96. Kuo Y-R, Chien C-M, Kuo M-J, Wang F-S, Huang E-Y, Wang C-J. Endothelin-1 expression associated with lipid peroxidation and nuclear factor-κB activation in type 2 diabetes mellitus patients with Angiopathy and limb amputation. Plast Reconstr Surg. 2016;137(1):187e–95e.

    Article  CAS  PubMed  Google Scholar 

  97. Gu J, Wang S, Tan Y, Cai L, editors. Inhibition of P53 Prevents Diabetic Cardiomyopathy by Attenuating the Early-Stage Apoptosis and Improving Late-Stage Senescence and Defects in Glycolysis and Angiogenesis. Diabetes; 2017: AMER Diabetes Assoc 1701 N Beauregard ST, Alexandria, VA 22311–1717 USA.

  98. Li Z, Jiang R, Yue Q, Peng H. MicroRNA-29 regulates myocardial microvascular endothelial cells proliferation and migration in association with IGF1 in type 2 diabetes. Biochem Biophys Res Commun. 2017;487(1):15–21.

    Article  CAS  PubMed  Google Scholar 

  99. van Beijnum JR, Pieters W, Nowak-Sliwinska P, Griffioen AW. Insulin-like growth factor axis targeting in cancer and tumour angiogenesis–the missing link. Biol Rev. 2017;92(3):1755–68.

    Article  PubMed  Google Scholar 

  100. Iorga A, Cunningham CM, Moazeni S, Ruffenach G, Umar S, Eghbali M. The protective role of estrogen and estrogen receptors in cardiovascular disease and the controversial use of estrogen therapy. Biol Sex Differ. 2017;8(1):33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Roncarati R, Anselmi CV, Losi MA, Papa L, Cavarretta E, Martins PDC, et al. Circulating miR-29a, among other up-regulated microRNAs, is the only biomarker for both hypertrophy and fibrosis in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol. 2014;63(9):920–7.

    Article  CAS  PubMed  Google Scholar 

  102. Fernandes T, Baraúna VG, Negrão CE, Phillips MI, Oliveira EM. Aerobic exercise training promotes physiological cardiac remodeling involving a set of microRNAs. Am J Phys Heart Circ Phys. 2015;309(4):H543–H52.

    CAS  Google Scholar 

  103. Habibi P, Alihemmati A, Nasirzadeh M, Yousefi H, Habibi M, Ahmadiasl N. Involvement of microRNA-133 and-29 in cardiac disturbances in diabetic ovariectomized rats. Iran J Basic Med Sci. 2016;19(11):1177–85.

    PubMed  PubMed Central  Google Scholar 

  104. Roggli E, Gattesco S, Caille D, Briet C, Boitard C, Meda P, et al. Changes in microRNA expression contribute to pancreatic β-cell dysfunction in prediabetic NOD mice. Diabetes. 2012;61(7):1742–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Arnold N, Koppula PR, Gul R, Luck C, Pulakat L. Regulation of cardiac expression of the diabetic marker microRNA miR-29. PLoS One. 2014;9(7):e103284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Goyal B, Mehta A. Diabetic cardiomyopathy: pathophysiological mechanisms and cardiac dysfuntion. Hum Exp Toxicol. 2013;32(6):571–90.

    Article  CAS  PubMed  Google Scholar 

  107. González GE, Rhaleb N-E, D’ambrosio MA, Nakagawa P, Liu Y, Leung P, et al. Deletion of interleukin-6 prevents cardiac inflammation, fibrosis and dysfunction without affecting blood pressure in angiotensin II-high salt-induced hypertension. J Hypertens. 2015;33(1):144–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Zhang Y, Wang J-H, Zhang Y-Y, Wang Y-Z, Wang J, Zhao Y, et al. Deletion of interleukin-6 alleviated interstitial fibrosis in streptozotocin-induced diabetic cardiomyopathy of mice through affecting TGFβ1 and miR-29 pathways. Sci Rep. 2016;6:23010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Akshay Srivastava or Kiran Kalia.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dasare, A.P., Gondaliya, P., Srivastava, A. et al. A therapeutic approach towards microRNA29 family in vascular diabetic complications: A boon or curse?. J Diabetes Metab Disord 18, 243–254 (2019). https://doi.org/10.1007/s40200-019-00409-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40200-019-00409-y

Keywords

Navigation