Skip to main content

Advertisement

Log in

Comparisons of microRNA expression profiles in vitreous humor between eyes with macular hole and eyes with proliferative diabetic retinopathy

  • Retinal Disorders
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

MicroRNAs (miRNAs) are small noncoding RNAs which regulate the activities of target mRNAs. We compared the expression profiles of the miRNAs in the vitreous of eyes with macular hole (MH) to that in eyes with proliferative diabetic retinopathy (PDR).

Methods

Vitreous and whole blood samples were collected from four patients with MH and from four patients with PDR. We assayed for 168 miRNAs in the vitreous and serum samples by the microRNA PCR Panel method.

Results

The mean number of miRNAs expressed in the vitreous was 63 (55–69) in eyes with MH and 86 (65–117) in eyes with PDR. The mean number of miRNAs expressed in the serum was 162 (159–167) in the MH patients and 142 (115–160) in the PDR patients. Twenty-six miRNAs were expressed in the vitreous of both MH and PDR eyes. Although there was no significant difference in the levels of 20 of the 26 (73 %) miRNAs expressed in both MH and PDR eyes, six of 26 miRNAs (24 %) (hsa-miR-15a, hsa-miR320a, hsa-miR-320b, hsa-miR-93, hsa-miR-29a, and hsa-miR-423-5p) were expressed significantly more highly in PDR eyes. In addition, the mean fold changes of three miRNAs, hsa-miR-23a, hsa-miR-320a, and hsa-miR-320b, in the vitreous to serum were significantly higher in the PDR group than in the MH group.

Conclusions

The expression of several miRNAs related to angiogenesis and fibrosis was expressed significantly higher in the vitreous of eyes with PDR. Further studies are needed to understand the role played by the miRNAs in the biological function of the eye.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Taft RJ, Pang KC, Mercer TR, Dinger M, Mattick JS (2010) Non-coding RNAs: regulators of disease. J Pathol 220:126–139

    Article  CAS  PubMed  Google Scholar 

  2. Kanwar JR, Mahidhara G, Kanwar RK (2010) MicroRNA in human cancer and chronic inflammatory diseases. Front Biosci 2:1113–1126

    Google Scholar 

  3. Tomankova T, Petrek M, Gallo J, Kriegova E (2011) MicroRNAs: emerging regulators of immune-mediated diseases. Scand J Immunol. doi:10.1111/j.1365-3083.2011.02650.x

    PubMed  Google Scholar 

  4. Anand S (2013) A brief primer on microRNAs and their roles in angiogenesis. Vasc Cell 5:2

    Article  PubMed Central  PubMed  Google Scholar 

  5. Boon RA (2012) MicroRNAs control vascular endothelial growth factor signaling. Circ Res 111:1388–1390

    Article  CAS  PubMed  Google Scholar 

  6. Allegra A, Alonci A, Campo S, Penna G, Petrungaro A, Gerace D, Musolino C (2012) Circulating microRNAs; new biomarkers in diagnosis, prognosis and treatment of cancer. Int J Oncol 41:1897–1912

    CAS  PubMed  Google Scholar 

  7. Cortez MA, Bueso-Ramos C, Ferdin J, Lopez-Berestein G, Sood AK, Calin GA (2011) MicroRNAs in body fluids–the mix of hormones and biomarkers. Nat Rev Clin Oncol 8:467–477

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Ragusa M, Caltabiano R, Russo A, Puzzo A, Avitabile T, Longo A, Toro MD, Di Pietro C, Purrello M, Reibaldi M (2013) MicroRNAs in vitreous humor from patients with ocular diseases. Mol Vis 19:430–440

    PubMed Central  CAS  PubMed  Google Scholar 

  9. Tuo J, Shen D, Yang HH, Chan CC (2014) Distinct microRNA-155 expression in the vitreous of patients with primary vitreoretinal lymphoma and uveitis. Am J Ophthalmol 15:728–734

    Article  Google Scholar 

  10. Fong DS, Aiello LP, Ferris FL 3rd, Klein R (2004) Diabetic retinopathy. Diabetes Care 27:2540–2553

    Article  PubMed  Google Scholar 

  11. Salam A, Mathew R, Sivaprasad S (2011) Treatment of proliferative diabetic retinopathy with anti-VEGF agents. Acta Opthalmol 89:405–411

    Article  CAS  Google Scholar 

  12. Saint-Geniez M, Maharaj AS, Walshe TE, Tucker BA, Sekiyama E, Kurihara T, Darland DC, Young MJ, D’Amore PA (2008) VEGF is required for visual function: evidence for a survival role on muller cells and photoreceptors. PLoS One 3:e3554. doi:10.1371/journal.pone.0003554

    Article  PubMed Central  PubMed  Google Scholar 

  13. Schraermeyer U, Julien S (2013) Effects of bevacizumab in retina and choroid after intravitreal injection into monkey eyes. Expert Opin Biol Ther 13:157–167

    Article  CAS  PubMed  Google Scholar 

  14. Mestdagh P, Van Vlierberghe P, De Weer A, Muth D, Westermann F, Speleman F, Vandesompele J (2009) A novel and universal method for microRNA RT-qPCR data normalization. Genome Biol 10:R64. doi:10.1186/gb-2009-10-6-r64

    Article  PubMed Central  PubMed  Google Scholar 

  15. Yin KJ, Olsen K, Hamblin M, Zhang J, Schwendeman SP, Chen YE (2012) Vascular endothelial cell-specific microRNA-15a inhibits angiogenesis in hindlimb ischemia. J Biol Chem 287:27055–27064

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Wang XH, Qian RZ, Zhang W, Chen SF, Jin HM, Hu RM (2009) MicroRNA-320 expression in myocardial microvascular endothelial cells and its relationship with insulin-like growth factor-1 in type 2 diabetic rats. Clin Exp Pharmacol Physiol 36:181–188

    Article  PubMed  Google Scholar 

  17. Long J, Wang Y, Wang W, Chang BH, Danesh FR (2010) Identification of microRNA-93 as a novel regulator of vascular endothelial growth factor in hyperglycemic conditions. J Biol Chem 285:23457–23465

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Fang JH, Zhou HC, Zeng C, Yang J, Liu Y, Huang X, Xhang JP, Guan XY, Zhuang SM (2011) MicroRNA-29b suppresses tumor angiogenesis, invasion, and metastasis by regulating matrix metalloproteinase 2 expression. Hepatology 54:1729–1740

    Article  CAS  PubMed  Google Scholar 

  19. Wu YY, Chen YL, Jao YC, Hsieh IS, Chang KC, Hong TM (2014) MiR-320 regulates tumor angiogenesis driven by vascular endothelial cells in oral cancer by silencing neuropilin 1. Angiogenesis 17:247–260

    Article  CAS  PubMed  Google Scholar 

  20. Liu LZ, Li C, Chen Q, Jing Y, Carpenter R, Jiang Y, Kung HF, Lai L, Jiang BH (2011) MiR-21 induced angiogenesis through AKT and ERK activation and HIF-1α expression. PLoS One 6:e19139. doi:10.1371/journal.pone.0019139

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Zhao Y, Xu Y, Luo F, Xu W, Wang B, Pang Y, Zhou J, Wang X, Liu Q (2013) Angiogenesis, mediated by miR-21, is involved arsenite-induced carcinogenesis. Toxicol Lett 223:35–41

    Article  CAS  PubMed  Google Scholar 

  22. Li R, Chung AC, Yu X, Lan HY (2014) MicroRNAs in diabetic kidney disease. Int J Endocrinol 2014:593956

    PubMed Central  PubMed  Google Scholar 

  23. Zhong X, Chung AC, Chen HY, Dong Y, Meng XM, Li R, Yang W, Hou FF, Lan HY (2013) MiR-21 is a key therapeutic target for renal injury in a mouse model of type 2 diabetes. Diabetologia 56:663–674

    Article  CAS  PubMed  Google Scholar 

  24. Wang J, Gao Y, Ma M, Li M, Zou D, Yang J, Zhu Z, Zhao X (2013) Effect of miR-21 on renal fibrosis by regulating MMP-9 and TIMP1 in kk-ay diabetic nephropathy mice. Cell Biochem Biophys 67:537–546

    Article  CAS  PubMed  Google Scholar 

  25. Fiorentino L, Cavalera M, Mavilio M, Conserva F, Menghini R, Gesualdo L, Federici M (2013) Regulation of TIMP3 in diabetic nephropathy: a role for microRNAs. Acta Diabetol 50:965–969

    Article  CAS  PubMed  Google Scholar 

  26. Zhong X, Chung AC, Chen HY, Meng XM, Lan HY (2011) Smad3-mediated upregulation of miR-21 promotes renal fibrosis. J Am Soc Nephrol 22:1668–1681

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Guduric-Fuchs J, O’Connor A, Cullen A, Harwood L, Medina RJ, O’Neill CL, Stitt AW, Curtis TM, Simpson DA (2012) Deep sequencing reveals predominant expression of miR-21 amongst the small non-coding RNAs in retinal microvascular endothelial cells. J Cell Biochem 113:2098–2111

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Zhou Q, Gallagher R, Ufret-Vincenty R, Li X, Olson EN, Wang S (2011) Regulation of angiogenesis and choroidal neovascularization by members of microRNA-23 ∼ 27 ∼ 24 clusters. Proc Natl Acad Sci U S A 108:8287–8292

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Nobuko Takahashi for her technical assistance and Professor Emeritus Duco Hamasaki of Bascom Palmer Eye Institute of the University of Miami for English editing.

Funding sources

This work was supported by Grant for Scientific Research from Kyorin University, Tokyo, Japan.

Conflicts of interest

No stated conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazunari Hirota.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hirota, K., Keino, H., Inoue, M. et al. Comparisons of microRNA expression profiles in vitreous humor between eyes with macular hole and eyes with proliferative diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol 253, 335–342 (2015). https://doi.org/10.1007/s00417-014-2692-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-014-2692-5

Keywords

Navigation