Skip to main content

Advertisement

Log in

miRNA signatures in diabetic retinopathy and nephropathy: delineating underlying mechanisms

  • Review
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

A worldwide failure to achieve glycemic targets has led to complications associated with diabetes mellitus. In addition to genetic and other risk factors, epigenetic factors like DNA methylation, histone modifications, and non-coding RNAs play a significant part in the pathogenesis of complications. Among non-coding RNAs, miRNAs have been explored extensively since they control various biological processes. Their dysregulation has been implicated in various diseases including diabetic complications. Diabetic retinopathy and nephropathy are two common microvascular diabetic complications. Diabetic retinopathy affects the retina of the eye whereas nephropathy damages kidneys on account of prolonged hyperglycemia. This review aims to evaluate the role of miRNAs in diabetic retinopathy and diabetic nephropathy with an emphasis on the dysregulation of various pathways involved. In addition, the role of significant miRNAs as biomarkers for the diagnosis and prognosis of complications has also been discussed. Further, an update on the role of important miRNAs as potential therapeutic modalities has been given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Adamis A, Shima D, Yeo K-T, Yeo T, Brown L, Berse B, Damore P, Folkman J (1993) Synthesis and secretion of vascular permeability factor/vascular endothelial growth factor by human retinal pigment epithelial cells. Biochem Biophys Res Commun 193:631–638

    CAS  PubMed  Google Scholar 

  2. Adamis AP, Berman AJ (2008) Immunological mechanisms in the pathogenesis of diabetic retinopathy. Semin Immunopathol 30(2):65–84. https://doi.org/10.1007/s00281-008-0111-x

    Article  CAS  PubMed  Google Scholar 

  3. Al-Kharashi AS (2018) Role of oxidative stress, inflammation, hypoxia and angiogenesis in the development of diabetic retinopathy. Saudi J Ophthalmol. 32:318–323. https://doi.org/10.1016/j.sjopt.2018.05.002

    Article  PubMed  PubMed Central  Google Scholar 

  4. Amr K, Abdelmawgoud H, Ali Z, Shehata S, Raslan H (2018) Potential value of circulating microRNA-126 and microRNA-210 as biomarkers for type 2 diabetes with coronary artery disease. Br J Biomed Sci 75:82–87

    CAS  PubMed  Google Scholar 

  5. Barbacid M (1994) The Trk family of neurotrophin receptors. J Neurobiol 25:1386–1403

    CAS  PubMed  Google Scholar 

  6. Barber AJ, Gardner TW, Abcouwer SF (2011) The significance of vascular and neural apoptosis to the pathology of diabetic retinopathy. Invest Ophthalmol Vis Sci 52:1156–1163. https://doi.org/10.1167/iovs.10-6293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Behl Y, Krothapalli P, Desta T, DiPiazza A, Roy S, Graves DT (2008) Diabetes-enhanced tumor necrosis factor-α production promotes apoptosis and the loss of retinal microvascular cells in type 1 and type 2 models of diabetic retinopathy. Am J Pathol 172:1411–1418

    PubMed  PubMed Central  Google Scholar 

  8. Bhisitkul R (2006) Vascular endothelial growth factor biology: clinical implications for ocular treatments. Br J Ophthalmol 90:1542–1547

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414:813–820

    CAS  PubMed  Google Scholar 

  10. Brownlee M (2005) The pathobiology of diabetic complications: a unifying mechanism. diabetes 54:1615–1625

    CAS  PubMed  Google Scholar 

  11. Caldwell RB, Bartoli M, Behzadian MA, El-Remessy AE, Al-Shabrawey M, Platt DH, Liou GI, Caldwell RW (2005) Vascular endothelial growth factor and diabetic retinopathy: role of oxidative stress. Curr Drug Targets 6:511–524

    CAS  PubMed  Google Scholar 

  12. Cao Z, Cooper ME (2011) Pathogenesis of diabetic nephropathy. J Diabetes Inv. 2:243–247. https://doi.org/10.1111/j.2040-1124.2011.00131.x

    Article  CAS  Google Scholar 

  13. Chawla A, Chawla R, Jaggi S (2016) Microvasular and macrovascular complications in diabetes mellitus: distinct or continuum? Indian j endocrinol. metab. 20:546

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Chibber R, Ben-Mahmud BM, Chibber S, Kohner EM (2007) Leukocytes in diabetic retinopathy. Curr Diabetes Rev 3:3–14

    CAS  PubMed  Google Scholar 

  15. Christopher AF, Kaur RP, Kaur G, Kaur A, Gupta V, Bansal P (2016) MicroRNA therapeutics: discovering novel targets and developing specific therapy. Perspect Clin Res 7:68–74. https://doi.org/10.4103/2229-3485.179431

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chung AC, Huang XR, Meng X, Lan HY (2010) miR-192 mediates TGF-β/Smad3-driven renal fibrosis. J Am Soc Nephrol 21:1317–1325

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Dawson D, Volpert O, Gillis P, Crawford S, Xu H-J, Benedict W, Bouck N (1999) Pigment epithelium-derived factor: a potent inhibitor of angiogenesis. Science 285:245–248

    CAS  PubMed  Google Scholar 

  18. El-Asrar AMA (2012) Role of inflammation in the pathogenesis of diabetic retinopathy. Middle East Afr J Ophthalmol 19:70–74. https://doi.org/10.4103/0974-9233.92118

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ezquer FE, Ezquer ME, Parrau DB, Carpio D, Yañez AJ, Conget PA (2008) Systemic administration of multipotent mesenchymal stromal cells reverts hyperglycemia and prevents nephropathy in type 1 diabetic mice. Biol Blood Marrow Transplant 14:631–640

    CAS  PubMed  Google Scholar 

  20. Faselis C, Katsimardou A, Imprialos K, Deligkaris P, Kallistratos M, Dimitriadis K (2020) Microvascular complications of type 2 diabetes mellitus. Curr Vasc Pharmacol 18:117–124

    CAS  PubMed  Google Scholar 

  21. Feenstra DJ, Yego EC, Mohr S (2013) Modes of retinal cell death in diabetic retinopathy. J clin exp ophthalmol 4:298–298. https://doi.org/10.4172/2155-9570.1000298

    Article  PubMed  PubMed Central  Google Scholar 

  22. Fiorentino L, Cavalera M, Mavilio M, Conserva F, Menghini R, Gesualdo L, Federici M (2013) Regulation of TIMP3 in diabetic nephropathy: a role for microRNAs. Acta Diabetol 50:965–969

    CAS  PubMed  Google Scholar 

  23. Fong DS, Aiello L, Gardner TW, King GL, Blankenship G, Cavallerano JD, Ferris FL, Klein R (2004) Retinopathy in diabetes Diabetes care 27:s84–s87

    PubMed  Google Scholar 

  24. Friedrich J, Hammes H, Krenning G, Hammes A (2014) miR-199a and miR-1983–players involved in diabetic retinopathy. Diabetologie und Stoffwechsel 9:P273

    Google Scholar 

  25. Fulzele S, El-Sherbini A, Ahmad S, Sangani R, Matragoon S, El-Remessy A, Radhakrishnan R, Liou GI (2015) MicroRNA-146b-3p regulates retinal inflammation by suppressing adenosine deaminase-2 in diabetes. Biomed Res Int 2015:846501. https://doi.org/10.1155/2015/846501

  26. Garcia-Fernandez N, Jacobs-Cachá C, Mora-Gutiérrez JM, Vergara A, Orbe J, Soler MJ (2020) Matrix metalloproteinases in diabetic kidney disease. J Clin Med 9:472

    CAS  PubMed Central  Google Scholar 

  27. Geraldes P, Hiraoka-Yamamoto J, Matsumoto M, Clermont A, Leitges M, Marette A, Aiello LP, Kern TS, King GL (2009) Activation of PKC-δ and SHP-1 by hyperglycemia causes vascular cell apoptosis and diabetic retinopathy. Nat Med 15:1298–1306. https://doi.org/10.1038/nm.2052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Goh S-Y, Cooper ME (2008) The role of advanced glycation end products in progression and complications of diabetes. J Clin Endocrinol Metab 93:1143–1152

    CAS  PubMed  Google Scholar 

  29. Gong Q, Xie J n, Li Y, Liu Y, Su G (2019) Enhanced ROBO4 is mediated by up-regulation of HIF-1α/SP1 or reduction in miR-125b-5p/miR-146a-5p in diabetic retinopathy. J Cell Mol Med 23:4723–4737. https://doi.org/10.1111/jcmm.14369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gong Q, Xie J n, Liu Y, Li Y, Su G (2017) Differentially expressed MicroRNAs in the development of early diabetic retinopathy. J Diabetes Res 2017:4727942. https://doi.org/10.1155/2017/4727942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Greco M, Chiefari E, Accattato F, Corigliano DM, Arcidiacono B, Mirabelli M, Liguori R, Brunetti FS, Pullano SA, Scorcia V, Fiorillo AS, Foti DP, Brunetti A (2020) MicroRNA-1281 as a novel circulating biomarker in patients with diabetic retinopathy. Front Endocrinol (Lausanne) 11:528. https://doi.org/10.3389/fendo.2020.00528

  32. Gross JL, De Azevedo MJ, Silveiro SP, Canani LH, Caramori ML, Zelmanovitz T (2005) Diabetic nephropathy: diagnosis, prevention, and treatment. Diabetes Care 28:164–176

    PubMed  Google Scholar 

  33. Guo J, Li J, Zhao J, Yang S, Wang L, Cheng G, Liu D, Xiao J, Liu Z, Zhao Z (2017) MiRNA-29c regulates the expression of inflammatory cytokines in diabetic nephropathy by targeting tristetraprolin. Sci Rep 7:1–13

    Google Scholar 

  34. Hahr G L B A, Koya R K D, Prischl M M F C, and Thajudeen G S B (2017) Managing diabetic nephropathies in clinical practice

  35. Hamada-Kanazawa M, Ogawa D, Takano M, Miyake M (2016) Sox6 suppression induces RA-dependent apoptosis mediated by BMP-4 expression during neuronal differentiation in P19 cells. Mol Cell Biochem 412:49–57

    CAS  PubMed  Google Scholar 

  36. Haque R, Hur EH, Farrell AN, Iuvone PM, Howell JC (2015) MicroRNA-152 represses VEGF and TGFβ1 expressions through post-transcriptional inhibition of (Pro) renin receptor in human retinal endothelial cells. Mol Vis 21:224

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Hayashi F, Smith KD, Ozinsky A, Hawn TR, Eugene CY, Goodlett DR, Eng JK, Akira S, Underhill DM, Aderem A (2001) The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410:1099–1103

    CAS  Google Scholar 

  38. He F, Peng F, Xia X, Zhao C, Luo Q, Guan W, Li Z, Yu X, Huang F (2014) MiR-135a promotes renal fibrosis in diabetic nephropathy by regulating TRPC1. Diabetologia 57:1726–1736

    CAS  PubMed  Google Scholar 

  39. Hu C, Sun L, Xiao L, Han Y, Fu X, Xiong X, Xu X, Liu Y, Yang S, Liu F (2015) Insights into the mechanisms involved in the expression and regulation of extracellular matrix proteins in diabetic nephropathy. Curr Med Chem 22:2858–2870

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Huang Y, Liu Y, Li L, Su B, Yang L, Fan W, Yin Q, Chen L, Cui T, Zhang J (2014) Involvement of inflammation-related miR-155 and miR-146a in diabetic nephropathy: implications for glomerular endothelial injury. BMC Nephrol 15:142

    PubMed  PubMed Central  Google Scholar 

  41. Huminiecki L, Gorn M, Suchting S, Poulsom R, Bicknell R (2002) Magic roundabout is a new member of the roundabout receptor family that is endothelial specific and expressed at sites of active angiogenesis. Genomics 79:547–552

    CAS  PubMed  Google Scholar 

  42. Ito T, Yang M, May WS (1999) RAX, a cellular activator for double-stranded RNA-dependent protein kinase during stress signaling*. J Biol Chem 274:15427–15432. https://doi.org/10.1074/jbc.274.22.15427

    Article  CAS  PubMed  Google Scholar 

  43. Ji Z, Luo J, Su T, Chen C, Su Y (2021) miR-7a targets insulin receptor substrate-2 gene and suppresses viability and invasion of cells in diabetic retinopathy mice via PI3K-Akt-VEGF pathway. Diabetes, metab syndr obes : targets ther 14:719–728. https://doi.org/10.2147/DMSO.S288482

    Article  Google Scholar 

  44. Jiang Q, Zhao F, Liu X, Li R, Liu J (2015) Effect of miR-200b on retinal endothelial cell function under high glucose environment. Int J Clin Exp Pathol 8:10482

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Jiang ZH, Tang YZ, Song HN, Yang M, Li B, Ni CL (2020) miRNA-342 suppresses renal interstitial fibrosis in diabetic nephropathy by targeting SOX6. Int J Mol Med 45:45–52. https://doi.org/10.3892/ijmm.2019.4388

    Article  CAS  PubMed  Google Scholar 

  46. Joussen AM, Poulaki V, Le ML, Koizumi K, Esser C, Janicki H, Schraermeyer U, Kociok N, Fauser S, Kirchhof B (2004) A central role for inflammation in the pathogenesis of diabetic retinopathy. FASEB J 18:1450–1452

    CAS  PubMed  Google Scholar 

  47. Joussen AM, Poulaki V, Mitsiades N, CaiySuzuma WI, PakJu JS T, Rook S L, Esser P, Mitsiades C (2003) Suppression of Fas-FasL-induced endothelial cell apoptosis prevents diabetic blood-retinal barrier breakdown in a model of streptozotocin-induced diabetes. FASEB J 17:76–78

    CAS  PubMed  Google Scholar 

  48. Kanwar YS, Sun L, Xie P, Liu F-Y, Chen S (2011) A glimpse of various pathogenetic mechanisms of diabetic nephropathy. Annu Rev Pathol 6:395–423. https://doi.org/10.1146/annurev.pathol.4.110807.092150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kato M, Putta S, Wang M, Yuan H, Lanting L, Nair I, Gunn A, Nakagawa Y, Shimano H, Todorov I (2009) TGF-β activates Akt kinase through a microRNA-dependent amplifying circuit targeting PTEN. Nat Cell Biol 11:881–889

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Kato M, Zhang J, Wang M, Lanting L, Yuan H, Rossi JJ, Natarajan R (2007) MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-β-induced collagen expression via inhibition of E-box repressors. Proc Natl Acad Sci 104:3432–3437

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Kaul K, Hodgkinson A, Tarr J M, Kohner E M, Chibber R (2010) Is inflammation a common retinal-renal-nerve pathogenic link in diabetes? Curr Diabetes Rev 6:294–303

    CAS  PubMed  Google Scholar 

  52. Khan ZA, Chakrabarti S (2007) Cellular signaling and potential new treatment targets in diabetic retinopathy. Exp Diabetes Res 2007:31867. https://doi.org/10.1155/2007/31867

  53. Koga K, Yokoi H, Mori K, Kasahara M, Kuwabara T, Imamaki H, Ishii A, Mori KP, Kato Y, Ohno S (2015) MicroRNA-26a inhibits TGF-β-induced extracellular matrix protein expression in podocytes by targeting CTGF and is downregulated in diabetic nephropathy. Diabetologia 58:2169–2180

    CAS  PubMed  Google Scholar 

  54. Kolset SO, Reinholt FP, Jenssen T (2012) Diabetic nephropathy and extracellular matrix. j histochem cytochemistry : official j Histochem Soc 60:976–986. https://doi.org/10.1369/0022155412465073

    Article  CAS  Google Scholar 

  55. Krupa A, Jenkins R, Luo DD, Lewis A, Phillips A, Fraser D (2010) Loss of MicroRNA-192 promotes fibrogenesis in diabetic nephropathy. J Am Soc Nephrol 21:438–447

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Lan HY, Mu W, Tomita N, Huang XR, Li JH, Zhu H-J, Morishita R, Johnson RJ (2003) Inhibition of renal fibrosis by gene transfer of inducible Smad7 using ultrasound-microbubble system in rat UUO model. J Am Soc Nephrol 14:1535–1548

    CAS  Google Scholar 

  57. Lechner J, O’Leary OE, Stitt AW (2017) The pathology associated with diabetic retinopathy. Vision Res 139:7–14

    PubMed  Google Scholar 

  58. Lenz O, Fornoni A, Ijaz A, Tejada T (2008) Role of inflammation in diabetic nephropathy. Curr Diabetes Rev 4:10–17

    PubMed  Google Scholar 

  59. Lim AKH, Tesch GH (2012) Inflammation in diabetic nephropathy. Mediators Inflamm 2012:146154. https://doi.org/10.1155/2012/146154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lin X, Zhou X, Liu D, Yun L, Zhang L, Chen X, Chai Q, Li L (2016) MicroRNA-29 regulates high-glucose-induced apoptosis in human retinal pigment epithelial cells through PTEN. In Vitro Cellular & Developmental Biology-Animal 52:419–426

    CAS  Google Scholar 

  61. Lou Z, Li Q, Wang C, and Li Y (2020) The effects of microRNA-126 reduced inflammation and apoptosis of diabetic nephropathy through PI3K/AKT signalling pathway by VEGF. Arch Physiol Biochem 1–10.https://doi.org/10.1080/13813455.2020.1767146

  62. Madsen-Bouterse SA, Kowluru RA (2008) Oxidative stress and diabetic retinopathy: pathophysiological mechanisms and treatment perspectives. Rev Endocr Metab Disord 9:315–327. https://doi.org/10.1007/s11154-008-9090-4

    Article  CAS  PubMed  Google Scholar 

  63. McArthur K, Feng B, Wu Y, Chen S, Chakrabarti S (2011) MicroRNA-200b regulates vascular endothelial growth factor–mediated alterations in diabetic retinopathy. Diabetes 60:1314–1323

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Mortuza R, Feng B, Chakrabarti S (2014) miR-195 regulates SIRT1-mediated changes in diabetic retinopathy. Diabetologia 57:1037–1046

    CAS  PubMed  Google Scholar 

  65. Noma H, Funatsu H, Yamashita H, Kitano S, Mishima HK, Hori S (2002) Regulation of angiogenesis in diabetic retinopathy: possible balance between vascular endothelial growth factor and endostatin. Arch Ophthalmol 120:1075–1080. https://doi.org/10.1001/archopht.120.8.1075

    Article  CAS  PubMed  Google Scholar 

  66. Numakawa T, Suzuki S, Kumamaru E, Adachi N, Richards M, Kunugi H (2010) BDNF function and intracellularsignaling in neurons. Histol Histopathol 25(2):237–258. https://doi.org/10.14670/HH-25.237

    Article  CAS  PubMed  Google Scholar 

  67. O'Brien J, Hayder H, Zayed Y, and Peng C (2018) Overview of MicroRNA biogenesis, mechanisms of actions, and circulation. Frontiers in Endocrinology 9: https://doi.org/10.3389/fendo.2018.00402

  68. Ogata N, Nishikawa M, Nishimura T, Mitsuma Y, Matsumura M (2002) Unbalanced vitreous levels of pigment epithelium-derived factor and vascular endothelial growth factor in diabetic retinopathy. Am J Ophthalmol 134:348–353

    CAS  PubMed  Google Scholar 

  69. Pantsulaia T (2006) Role of TGF-beta in pathogenesis of diabetic nephropathy. Georgian Med News 131:13–18

    Google Scholar 

  70. Park JT, Kato M, Yuan H, Castro N, Lanting L, Wang M, Natarajan R (2013) FOG2 protein down-regulation by transforming growth factor-β1-induced microRNA-200b/c leads to Akt kinase activation and glomerular mesangial hypertrophy related to diabetic nephropathy. J Biol Chem 288:22469–22480

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Pérez-Santos M (2020) miRNA let-7b inhibitors by treatment of diabetic retinopathy: evaluation patent US2019093106. Alianzas y tendencias BUAP 5(18)

  72. Pirola L, Balcerczyk A, Okabe J, El-Osta A (2010) Epigenetic phenomena linked to diabetic complications. Nat Rev Endocrinol 6:665

    CAS  PubMed  Google Scholar 

  73. Putta S, Lanting L, Sun G, Lawson G, Kato M, Natarajan R (2012) Inhibiting microRNA-192 ameliorates renal fibrosis in diabetic nephropathy. J Am Soc Nephrol 23:458–469

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Rahimi R, Nikfar S, Larijani B, Abdollahi M (2005) A review on the role of antioxidants in the management of diabetes and its complications. Biomed Pharmacother 59:365–373

    CAS  PubMed  Google Scholar 

  75. Raptis AE, Viberti G (2001) Pathogenesis of diabetic nephropathy. Exp Clin Endocrinol Diabetes 109(Suppl 2):S424–S437. https://doi.org/10.1055/s-2001-18600

    Article  CAS  PubMed  Google Scholar 

  76. Reddy MA, Zhang E, Natarajan R (2015) Epigenetic mechanisms in diabetic complications and metabolic memory. Diabetologia 58:443–455

    CAS  PubMed  Google Scholar 

  77. Ruiz MA, Feng B, Chakrabarti S (2015) Polycomb repressive complex 2 regulates MiR-200b in retinal endothelial cells: potential relevance in diabetic retinopathy. PloS one 10:e0123987

    PubMed  PubMed Central  Google Scholar 

  78. Schena FP, Gesualdo L (2005) Pathogenetic mechanisms of diabetic nephropathy. J Am Soc Nephrol 16:S30–S33

    CAS  PubMed  Google Scholar 

  79. Schmidt AM, Du Yan S, Yan SF, Stern DM (2001) The multiligand receptor RAGE as a progression factor amplifying immune and inflammatory responses. J Clin Investig 108:949–955

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Schneeberger S, Hjelmeland LM, Tucker RP, Morse LS (1997) Vascular endothelial growth factor and fibroblast growth factor 5 are colocalized in vascular and avascular epiretinal membranes. Am J Ophthalmol 124:447–454

    CAS  PubMed  Google Scholar 

  81. Semeraro F, Cancarini A, dell’Omo R, Rezzola S, Romano MR, Costagliola C (2015) Diabetic retinopathy: vascular and inflammatory disease. J Diabetes Res 2015:582060. https://doi.org/10.1155/2015/582060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Shams N, Ianchulev T (2006) Role of vascular endothelial growth factor in ocular angiogenesis. Ophthalmol Clin North Am 19:335–344

    PubMed  Google Scholar 

  83. Shi M, Tian P, Liu Z et al (2020) MicroRNA-27a targets Sfrp1 to induce renal fibrosis in diabetic nephropathy by activating Wnt/β-Catenin signalling. Biosci Rep. 40(6):BSR20192794. https://doi.org/10.1042/BSR20192794

  84. Silva VA, Polesskaya A, Sousa TA, Corrêa VM, André ND, Reis RI, Kettelhut IC, Harel-Bellan A, De Lucca FL (2011) Expression and cellular localization of microRNA-29b and RAX, an activator of the RNA-dependent protein kinase (PKR), in the retina of streptozotocin-induced diabetic rats. Mol Vis 17:2228

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Simo R, Carrasco E, Garcia-Ramirez M, Hernandez C (2006) Angiogenic and antiangiogenic factors in proliferative diabetic retinopathy. Curr Diabetes Rev 2:71–98

    CAS  PubMed  Google Scholar 

  86. Simó R, Carrasco E, García-Ramírez M, Hernández C (2006) Angiogenic and antiangiogenic factors in proliferative diabetic retinopathy. Curr Diabetes Rev 2:71–98. https://doi.org/10.2174/157339906775473671

    Article  PubMed  Google Scholar 

  87. Sugiyama T, Kobayashi M, Kawamura H, Li Q, Puro DG (2004) Enhancement of P2X(7)-induced pore formation and apoptosis: an early effect of diabetes on the retinal microvasculature. Invest Ophthalmol Vis Sci 45:1026–1032. https://doi.org/10.1167/iovs.03-1062

    Article  PubMed  Google Scholar 

  88. Sun J, Wang J, Lu W, Xie L, Lv J, Li H, Yang S (2020) MiR-325-3p inhibits renal inflammation and fibrosis by targeting CCL19 in diabetic nephropathy. Clin Exp Pharmacol Physiol 47:1850–1860. https://doi.org/10.1111/1440-1681.13371

    Article  CAS  PubMed  Google Scholar 

  89. Tian Z, Greene AS, Pietrusz JL, Matus IR, Liang M (2008) MicroRNA–target pairs in the rat kidney identified by microRNA microarray, proteomic, and bioinformatic analysis. Genome Res 18:404–411

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Wang K, Xie D, Xie J, Wan Y, Ma L, Qi X, Yang S (2015) MiR-27a regulates Wnt/beta-catenin signaling through targeting SFRP1 in glioma. NeuroReport 26:695–702

    CAS  PubMed  Google Scholar 

  91. Wang L-p, Geng J-n, Sun B, Sun C-b, Shi Y, Yu X-y (2020) MiR-92b-3p is induced by advanced glycation end products and involved in the pathogenesis of diabetic nephropathy. Evidence-Based Complementary and Alternative Medicine 2020:6050874. https://doi.org/10.1155/2020/6050874

    Article  PubMed  PubMed Central  Google Scholar 

  92. Wang Q, Wang Y, Minto AW, Wang J, Shi Q, Li X, Quigg RJ (2008) MicroRNA-377 is up-regulated and can lead to increased fibronectin production in diabetic nephropathy. FASEB J 22:4126–4135

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Wang S, Olson EN (2009) AngiomiRs—key regulators of angiogenesis. Curr Opin Genet Dev 19:205–211. https://doi.org/10.1016/j.gde.2009.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Wang Y, Lin W, Ju J (2020) MicroRNA-409–5p promotes retinal neovascularization in diabetic retinopathy. Cell Cycle 19:1314–1325. https://doi.org/10.1080/15384101.2020.1749484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Wang Z, Deng M, Liu Z, Wu S (2017) Hypoxia-induced miR-210 promoter demethylation enhances proliferation, autophagy and angiogenesis of schwannoma cells. Oncol Rep 37:3010–3018

    CAS  PubMed  Google Scholar 

  96. Wirostko B, Wong TY, Simó R (2008) Vascular endothelial growth factor and diabetic complications. Prog Retin Eye Res 27:608–621

    CAS  PubMed  Google Scholar 

  97. Wu J-h, Gao Y, Ren A-j, Zhao S-h, Zhong M, Peng Y-j, Shen W, Jing M, Liu L (2012) Altered microRNA expression profiles in retinas with diabetic retinopathy. Ophthalmic Res 47:195–201

    CAS  PubMed  Google Scholar 

  98. Wu J, Lu K, Zhu M, Xie X, Ding Y, Shao X, Chen Y, Liu J, Xu M, Xu Y, Zhou J, Shen X, Zhu C (2020) miR-485 suppresses inflammation and proliferation of mesangial cells in an in vitro model of diabetic nephropathy by targeting NOX5. Biochem Biophys Res Commun 521:984–990. https://doi.org/10.1016/j.bbrc.2019.11.020

    Article  CAS  PubMed  Google Scholar 

  99. Wu L, Wang Q, Guo F, Ma X, Wang J, Zhao Y, Yan Y, Qin G (2021) Involvement of miR-27a-3p in diabetic nephropathy via affecting renal fibrosis, mitochondrial dysfunction, and endoplasmic reticulum stress. J Cell Physiol 236:1454–1468. https://doi.org/10.1002/jcp.29951

    Article  CAS  PubMed  Google Scholar 

  100. Wu XD, Liu WL, Zeng K, Lei HY, Zhang QG, Zhou SQ, Xu SY (2014) Advanced glycation end products activate the mi RNA/RhoA/ROCK 2 pathway in endothelial cells. Microcirculation 21:178–186

    CAS  PubMed  Google Scholar 

  101. Yamagishi S-i (2011) Role of advanced glycation end products (AGEs) and receptor for AGEs (RAGE) in vascular damage in diabetes. Exp Gerontol 46:217–224

    CAS  PubMed  Google Scholar 

  102. Yamashiro K, Tsujikawa A, Ishida S, Usui T, Kaji Y, Honda Y, Ogura Y, Adamis AP (2003) Platelets accumulate in the diabetic retinal vasculature following endothelial death and suppress blood-retinal barrier breakdown. Am J Pathol 163:253–259

    PubMed  PubMed Central  Google Scholar 

  103. Yancopoulos GD, Klagsbrun M, Folkman J (1998) Vasculogenesis, angiogenesis, and growth factors: ephrins enter the fray at the border. Cell 93:661–664. https://doi.org/10.1016/S0092-8674(00)81426-9

    Article  CAS  PubMed  Google Scholar 

  104. Yang J, Lane PH, Pollock JS, Carmines PK (2010) Protein kinase C-dependent NAD (P) H oxidase activation induced by type 1 diabetes in renal medullary thick ascending limb. Hypertension 55:468–473

    CAS  PubMed  Google Scholar 

  105. Ye M, Li D, Yang J, Xie J, Yu F, Ma Y, Zhu X, Zhao J, Lv Z (2015) MicroRNA-130a targets MAP3K12 to modulate diabetic endothelial progenitor cell function. Cell Physiol Biochem 36:712–726

    CAS  PubMed  Google Scholar 

  106. Yin C, Lin X, Sun Y, Ji X (2020) Dysregulation of miR-210 is involved in the development of diabetic retinopathy and serves a regulatory role in retinal vascular endothelial cell proliferation. Eur J Med Res 25:1–8

    Google Scholar 

  107. Kato M, Dang V, Wang M, Park JT, Deshpande S, Kadam S, Mardiros A, Zhan Y, Oettgen P, Putta S, Yuan H, Lanting L, Natarajan R (2013) TGF-β induces acetylation of chromatin and of Ets-1 to alleviate repression of miR-192 in diabetic nephropathy. Sci Signal 6(278):ra43. https://doi.org/10.1126/scisignal.2003389

  108. Zanchi C, Macconi D, Trionfini P, Tomasoni S, Rottoli D, Locatelli M, Rudnicki M, Vandesompele J, Mestdagh P, Remuzzi G (2017) MicroRNA-184 is a downstream effector of albuminuria driving renal fibrosis in rats with diabetic nephropathy. Diabetologia 60:1114–1125

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Zarjou A, Yang S, Abraham E, Agarwal A, Liu G (2011) Identification of a microRNA signature in renal fibrosis: role of miR-21. American Journal of Physiology-Renal Physiology 301:F793–F801

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Zeng LF, Xiao Y, Sun L (2019) A Glimpse of the Mechanisms Related to Renal Fibrosis in Diabetic Nephropathy. Adv Exp Med Biol 1165:49–79. https://doi.org/10.1007/978-981-13-8871-2_4

    Article  CAS  PubMed  Google Scholar 

  111. Zhang J, Cui C, Xu H (2019) Downregulation of miR-145–5p elevates retinal ganglion cell survival to delay diabetic retinopathy progress by targeting FGF5. Biosci Biotechnol Biochem 83:1655–1662. https://doi.org/10.1080/09168451.2019.1630251

    Article  CAS  PubMed  Google Scholar 

  112. Zhang Z, Peng H, Chen J, Chen X, Han F, Xu X, He X, Yan N (2009) MicroRNA-21 protects from mesangial cell proliferation induced by diabetic nephropathy in db/db mice. FEBS Lett 583:2009–2014

    CAS  PubMed  Google Scholar 

  113. Zhang Z, Song C, Wang T, Sun L, Qin L, Ju J (2021) miR-139-5p promotes neovascularization in diabetic retinopathy by regulating the phosphatase and tensin homolog. Arch Pharmacal Res 44:205–218. https://doi.org/10.1007/s12272-021-01308-8

    Article  CAS  Google Scholar 

  114. Zhao H, Zhang J, Yu J (2015) HMGB-1 as a potential target for the treatment of diabetic retinopathy. Medical science monitor: international medical journal of experimental and clinical research 21:3062

    CAS  Google Scholar 

  115. Zhao P, Li X, Li Y, Zhu J, Sun Y, Hong J (2021) Mechanism of miR-365 in regulating BDNF-TrkB signal axis of HFD/STZ induced diabetic nephropathy fibrosis and renal function. Int Urol Nephrol 53:2177–2187. https://doi.org/10.1007/s11255-021-02853-3

    Article  CAS  PubMed  Google Scholar 

  116. Zhao S, Li T, Li J, Lu Q, Han C, Wang N, Qiu Q, Cao H, Xu X, Chen H (2016) miR-23b-3p induces the cellular metabolic memory of high glucose in diabetic retinopathy through a SIRT1-dependent signalling pathway. Diabetologia 59:644–654

    CAS  PubMed  Google Scholar 

  117. Zhong X, Chung ACK, Chen H-Y, Dong Y, Meng X, Li R, Yang W, Hou F, Lan H (2013) miR-21 is a key therapeutic target for renal injury in a mouse model of type 2 diabetes. Diabetologia 56:663–674

    CAS  PubMed  Google Scholar 

  118. Zong H, Ward M, Stitt AW (2011) AGEs, RAGE, and diabetic retinopathy. Curr DiabRep 11:244–252

    Google Scholar 

Download references

Funding

Central University of Punjab, Bathinda, and CSIR (senior research fellowship to Prabhsimran Kaur [09/1051(0020)/2018-EMR-1]) are acknowledged for funding.

Author information

Authors and Affiliations

Authors

Contributions

The idea of the article was framed by P. K., S. K., S. S., and A. M. Literature was searched by P. K. and A. M. and data analysis was done by P. K., S. K., and S. S. The draft was jointly prepared by P. K., S. K., S. S., and A. M. It was critically revised by A. M. and S. S. The authors declare that all data were generated in-house and that no paper mill was used.

Corresponding authors

Correspondence to Sandeep Singh or Anjana Munshi.

Ethics declarations

Research involving human participants and/or animals

This work does not include any human blood sample and/or animals.

Data sharing statement

Data sharing does not apply to this article as no new data were created or analyzed in this study.

Informed consent

Not applicable as no human blood samples were taken while compiling this review article.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

1. miRNAs play a significant role in the pathogenesis of microvascular diabetic complications, diabetic retinopathy, and diabetic nephropathy, by regulating various pathways involved including inflammation, apoptosis, and oxidative stress.

2. miRNAs, miR-29b, miR-29, miR-130a, miR-199a, miR-1983, miR-146-3p, miR-200b, miR-152, and miR-23-3p are important players in diabetic retinopathy and, on the other hand, miR-21, miR-29c, miR-145a, miR-377, miR-192, miR-200b/c, miR-216a/217, miR-26a, miR-192, miR-184, miR-135a, miR-221, and miR-217 are involved in diabetic nephropathy.

3. The relationship between the miRNA and diabetic retinopathy and nephropathy suggests that miRNAs can be explored as therapeutic targets with promising results and few side effects for the treatment of this complication.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, P., Kotru, S., Singh, S. et al. miRNA signatures in diabetic retinopathy and nephropathy: delineating underlying mechanisms. J Physiol Biochem 78, 19–37 (2022). https://doi.org/10.1007/s13105-021-00867-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-021-00867-0

Keywords

Navigation