Skip to main content
Log in

Synthesis and Characterization of CdO–SnO2 Nanocomposites Prepared by Hydrothermal Method

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

In this work, (1−x)CdO–xSnO2 nanocomposites (≤ 0.15) have been synthesized via hydrothermal route. The structural study reveals that CdO nanostructures possess crystalline phase and cubic structure. The CdO–SnO2 nanocomposites possess both cubic and orthorhombic structure with good crystallinity. The crystallite size in the nanocomposites was found to be in the range of 9.6–19.6 nm. Field emission scanning electronic microscopy and high-resolution tunnelling microscopy analysis confirm the presence of both cubic and orthorhombic structures which is also confirmed from X-ray diffraction studies. Fourier transform infrared spectroscopy (FTIR) studies confirm that CdO–SnO2 nanocomposites possess the characteristics band of both CdO and SnO2 nanostructures. The UV–visible absorption studies confirm that the optical absorption band in CdO–SnO2 nanocomposites possesses both blue and red shift as compared to that of CdO nanostructures. Photoluminescence spectroscopy studies reveal the appearance of strong emission peak at 513, 469 and 369 nm corresponding to green, blue and violet emission spectrum, respectively, in CdO–SnO2 nanocomposites. The FTIR studies confirm the presence of hydroxyl and water functional group due to atmospheric water vapours and chemical bonding in CdO and CdO–SnO2 nanocomposites. Raman spectroscopy confirms the presence of Raman bands of both CdO and SnO2 phases in the CdO–SnO2 nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. P.H.C. Camargo, K.G. Satyanarayana, F. Wypych, Mater. Res. 12, 1 (2007)

    Article  Google Scholar 

  2. Z.L. Wang, Mater. Today 7(6), 26 (2004)

    Article  Google Scholar 

  3. H. Wang, A.L. Rogach, Chem. Mater. 26, 123 (2014)

    Article  Google Scholar 

  4. T. Singh, D.K. Pandya, R. Singh, Mater. Sci. Eng. B 176, 945 (2011)

    Article  Google Scholar 

  5. A.C. Cakir, S. Erten-Ela, Adv. Powder Technol. 23, 655 (2012)

    Article  Google Scholar 

  6. W.H. Zhang, W.D. Zhang, Sens. Actuators B 2, 403 (2008)

    Article  Google Scholar 

  7. X. Jia, H. Fan, L. Qin, C. Yang, J. Dispers. Sci. Technol. 31, 1405 (2010)

    Article  Google Scholar 

  8. H. Karami, Int. J. Electrochem. Sci. 5, 720 (2010)

    Google Scholar 

  9. S.P. Meshram, J.D. Ambekar, I.S. Mulla, D.P. Amalnerkar, P.V. Adhyapak, J. Nanoeng. Nanomanuf. 4(2), 127 (2014)

    Article  Google Scholar 

  10. E. Mosquera, I.D. Pozo, M. Morel, J. Solid State Chem. 206, 265 (2013)

    Article  Google Scholar 

  11. S. Erten-Ela, Int. J. Photoenergy 2013, 436831 (2013)

    Article  Google Scholar 

  12. A. Hamrouni, N. Moussaa, F. Parrino, A.D. Paola, A. Houas, L. Palmisano, J. Mol. Catal. A Chem. 390, 133 (2014)

    Article  Google Scholar 

  13. W. Chen, Q. Li, L. Xu, W. Zeng, J. Nano Sci. Nanotechnol. 15, 1245 (2015)

    Article  Google Scholar 

  14. C.J.D. Godines, F.J.F. Ruiz, R.C. Perez, G.T. Delgado, F.J.E. Broitman, J. Sol-Gel. Sci. Technol. 74, 114 (2015)

    Article  Google Scholar 

  15. N.B. Hasan, G.H. Mohammed, M.A.A. Majeed, Phys. Astronaut. 59, 62 (2015)

    Google Scholar 

  16. R. Chandiramouli, B.G. Jeyaprakash, Solid State Sci. 16, 102 (2013)

    Article  Google Scholar 

  17. F.T. Thema, P. Beukes, A.G. Fakim, M. Maaza, J. Alloys Compd. 646, 1043 (2015)

    Article  Google Scholar 

  18. X. Fu, J. Liu, T. Han, X. Zhang, F. Meng, J. Liu, Sens. Actuators B 184, 260 (2013)

    Article  Google Scholar 

  19. G.E. Patil, D.D. Kajale, V.B. Gaikwad, G.H. Jain, Int. Nano Lett. 2, 17 (2012)

    Article  Google Scholar 

  20. J. Pan, H. Shen, S. Mathur, J. Nanotechnol. 2012, 1 (2011)

    Article  Google Scholar 

  21. A. Ayeshamariam, C. Sanjeeviraja, R.P. Samy, J. Photonics Spintron. 2, 2324 (2013)

    Google Scholar 

  22. A.T. Ravichandran, A.R. Xavier, K. Pushpanathan, B.M. Nagabhushana, R. Chandramohan, J. Mater. Sci. Mater. Electron. 27, 2693 (2016)

    Article  Google Scholar 

  23. N.C.S. Selvam, R.T. Kumar, K. Yogeenth, L.J. Kennedy, G. Sekaran, J.J. Vijaya, Powder Technol. 211, 250 (2011)

    Article  Google Scholar 

  24. A. Tadjarodi, M. Imani, Mater. Lett. 65, 1025 (2011)

    Article  Google Scholar 

  25. H. Seema, K.C. Kemp, V. Chandra, K.S. Kim, Nanotechnology 23, 355705 (2012)

    Article  Google Scholar 

  26. A. Kumar, L. Rout, R.S. Dhaka, S.L. Samal, P. Dash, RSC Adv. 5, 39193 (2015)

    Article  Google Scholar 

  27. L. Tan, L. Wang, Y. Wang, J. Nanomater. 2011, 529874 (2011)

    Article  Google Scholar 

  28. A. Kumar, A.C. Pandey, R. Parkash, Catal. Sci. Technol. 2, 2533 (2012)

    Article  Google Scholar 

  29. K. Anandhan, R.T. Kumar, Mol. Biomol. Spectrosc. 143, 476 (2015)

    Article  Google Scholar 

  30. E.A. Davis, N.F. Mott, Philos. Mag. 22, 903 (1970)

    Article  Google Scholar 

  31. Z.X. Yang, W. Zhong, Y.X. Yin, X. Du, Y. Deng, C. Au, Y.W. Du, Nanoscale Res. Lett. 5, 961 (2010)

    Article  Google Scholar 

  32. N. Rajesh, J.C. Kannanb, T.K. Kumarc, G. Neri, Acta Phys. Pol. A 125, 1229 (2014)

    Article  Google Scholar 

  33. S. Kumar, A.K. Ojha, AIP Adv. 3, 052109 (2013)

    Article  Google Scholar 

  34. S. Kumar, A.K. Ojha, R.K. Singh, J. Raman Spectrosc. 45, 717 (2014)

    Article  Google Scholar 

  35. R. Cusco, J. Ibanez, N.D. Amador, L. Artus, J.Z. Perez, V.M. Sanjose, J. Appl. Phys. 107, 063519 (2010)

    Article  Google Scholar 

  36. S. Kumar, A.K. Ojha, B. Walkenfort, J. Photochem. Photobiol. 159, 111 (2016)

    Article  Google Scholar 

  37. T.M. Khan, T. Shahid, M. Zakria, I.R. Shakoor, Electron. Mater. Lett. 11, 366 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported financially by the Science and Engineering Research Board, Department of Science and Technology (DST), Govt. of India (No. SB/EMEQ/190/2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kapil Sirohi.

Additional information

Available online at http://link.springer.com/journal/40195.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sirohi, K., Kumar, S., Singh, V. et al. Synthesis and Characterization of CdO–SnO2 Nanocomposites Prepared by Hydrothermal Method. Acta Metall. Sin. (Engl. Lett.) 31, 254–262 (2018). https://doi.org/10.1007/s40195-017-0659-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-017-0659-3

Keywords

Navigation