Skip to main content
Log in

Mechanical and tribological properties of CdO + SnO2 thin films prepared by sol–gel

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

We report the mechanical and tribological properties of transparent conductive oxide CdO + SnO2 coatings. The films were deposited on glass substrates by the sol–gel technique using, as precursor solution, a mixture of CdO and SnO2 solutions obtained at room temperature. Depending on the Sn atomic concentration percentage values the X-ray diffraction patterns show three types of films constituted of (1) CdO + Cd2SnO4, (2) Cd2SnO4 and (3) Cd2SnO4 + CdSnO3 crystals. Reciprocal microfriction tests revealed that films with Cd2SnO4 phase have friction values in the range 0.48–0.51 and a low wear rate of ~5 × 10−5 mm3 N−1 m−1. Nanoindentation tests have shown an increment of the elastic modulus from 50 GPa for CdO + Cd2SnO4 films to 90 GPa for Cd2SnO4 films, while the hardest coating was the one constituted by Cd2SnO4 crystals with H = 5.7 GPa, comparable to the hardness and elastic modulus reported for ITO films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Antartis D, Chasiotis I (2014) Sol Energy 105:694–704

    Article  Google Scholar 

  2. Granqvist CG (2007) Sol Energy Mater Sol Cell 91:1529–15985

    Article  Google Scholar 

  3. Xuanzhi W (2004) Sol Energy 77:803–814

    Article  Google Scholar 

  4. Kumaravel R, Ramamurthi K (2011) J Alloys Compd 509:4390–4393

    Article  Google Scholar 

  5. Ismail RA, Tawfiq SA, Hababa R, Sabry RS, Abdulrazaq OA (2007) e-J Surf Sci Nanotech 5:152–154

    Article  Google Scholar 

  6. Jeyadheepan K, Palanichamy P, Swaminathan V, Jayachandran M, Sanjeeviraja C (2010) Appl Phys A Mater 98:919–925

    Article  Google Scholar 

  7. Metz AW, Lane MA, Kannewurf CR, Poeppelmeier KR, Marks TJ (2004) Chem Vap Depos 10:297–299

    Article  Google Scholar 

  8. Tahar RBH, Ban T, Ohya Y, Takahashi Y (2001) J Am Ceram Soc 84:85–91

    Article  Google Scholar 

  9. Valincius G, Reipa V, Vilker V, Woodward JT, Vaudin M (2001) J Electrochem Soc 148:E341–E347

    Article  Google Scholar 

  10. Hsieh PT, Li TC, Wu BH, Chung CJ, Lin JF (2013) Surf Coat Tech 231:443–446

    Article  Google Scholar 

  11. Chang RC, Li TC, Lin CW (2012) Appl Surf Sci 258:3732–3737

    Article  Google Scholar 

  12. Sierros KA, Kessman AJ, Nair R, Randall NX, Cairns DR (2011) Thin Solid Films 520:424–429

    Article  Google Scholar 

  13. Jamting AK, Bell JM, Swain MV, Wielunski LS, Clissold R (1998) Thin Solid Films 332:189–194

    Article  Google Scholar 

  14. Chang S-Y, Hsiao Y-C, Huang Y-C (2008) Surf Coat Tech 201:5416–5420

    Article  Google Scholar 

  15. Zeng K, Zhu F, Hu J, Shen L, Zhang K, Gong H (2003) Thin Solid Films 443:60–65

    Article  Google Scholar 

  16. Zhun Y, Wang Y, Wan P-F, Li Hong-Yu, Wang Shou-Yu (2012) Chin Phys Lett 29:381031–381034

    Google Scholar 

  17. Logothetidis S, Laskarakis A, Kassavetis S, Lousinian S, Gravalidis C, Kiriakidis G (2008) Thin Solid Films 516:1345–1349

    Article  Google Scholar 

  18. Diliegros Godines CJ, Torres Castanedo CG, Castanedo Pérez R, Torres Delgado G, Zelaya Ángel O (2014) Sol Energy Mater Sol Cells 128:150–155

    Article  Google Scholar 

  19. Oliver WC, Pharr GM (2004) J Mater Res 19:3–20

    Article  Google Scholar 

  20. Archard JF (1953) J Appl Phys 24:981

    Article  Google Scholar 

  21. Birkholt M (2006) Thin film analysis by X-ray scattering, 1st edn. Wiley, Weinheim, pp 268–278

    Google Scholar 

  22. Broitman E, Furlan A, Geuorguiev GK, Czigány ZS, Högberg H, Hultman L (2012) Key Eng Mater 488–489:581–584

    Google Scholar 

  23. Zhou B, Prorok BC (2010) J Mater Res 25(9):1671–1678

    Article  Google Scholar 

  24. Broitman E (2014) Friction 2:40–46

    Article  Google Scholar 

  25. Wen-Fa W, Chiou B-S (1997) Thin Solid Films 293:244–250

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Consejo Nacional de Ciencia y Tecnología (CONACyT) under Project FOMIX-QRO-2012-C01-192880 and Instituto de Ciencia y Tecnología del Distrito Federal under Project ICyTDF/341/2010 and ICyTDF/258/2012. The authors also thank CONACyT for the PhD. fellowship awarded to C. J. Diliegros Godines and F. J. Flores Ruiz. Esteban Broitman acknowledges the Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linköping University (Faculty Grant SFO-Mat-LiU # 2009-00971).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. J. Flores-Ruiz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diliegros-Godines, C.J., Flores-Ruiz, F.J., Castanedo-Pérez, R. et al. Mechanical and tribological properties of CdO + SnO2 thin films prepared by sol–gel. J Sol-Gel Sci Technol 74, 114–120 (2015). https://doi.org/10.1007/s10971-014-3584-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-014-3584-1

Keywords

Navigation