Skip to main content
Log in

Bake-Hardening Response of High Martensite Dual-Phase Steel with Different Morphologies and Volume Fractions

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

Bake-hardening behaviour of carbon steel with different martensite morphologies and volume fraction was investigated. The specimens with fibrous and bulky martensite were prestrained in tension by 4%. After this, they were unloaded and bake hardened at 180 °C for 10–160 min. It was found that dual-phase steel samples which were bake hardened at 180 °C for 20 min showed an increase in the yield stress (YS) and ultimate tensile stress (UTS) but a decrease in ductility. Further increase in the bake-hardening time of 80 or 160 min has reduced the YS and UTS, but increased the ductility. Δσ (increase in stress due to bake hardening), YS and UTS values are higher for the microstructure containing fibrous martensite compared to the microstructure-containing bulky martensite. It was also observed that at a given baking temperature Δσ, YS and UTS increased by volume of martensite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J. Kadkhodapour, A. Butz, S. Ziaei Rad, Acta Mater. 59, 2575 (2011)

    Article  Google Scholar 

  2. A.P. Coldren, G. Tither, J. Met. 30, 16 (1978)

    Google Scholar 

  3. S. Sun, M. Pugh, Mater. Sci. Eng. A 335, 298 (2002)

    Article  Google Scholar 

  4. S. Sodjit, V. Uthaisangsuk, Mater. Des. 41, 370 (2012)

    Article  Google Scholar 

  5. W. Wang, M. Li, C. He, X. Wei, D. Wang, H. Dub, Mater. Des. 47, 510 (2013)

    Article  Google Scholar 

  6. S. Kim, S. Lee, Metall. Mater. Trans. A 31A, 1753 (2000)

    Article  Google Scholar 

  7. B.C. Hwang, T.Y. Cao, S.Y. Shin, S.H. Kim, S.H. Lee, S.J. Kim, Mater. Sci. Technol. 21, 967 (2005)

    Article  Google Scholar 

  8. L.H. Sang, H. Byoungchul, L. Sunghak, L.C. Gil, K. Sung-Joon, Metall. Mater. Trans. A 35A, 2371 (2004)

    Google Scholar 

  9. W. Wangn, X. Wei, Int. J. Mech. 67, 100 (2013)

    Article  Google Scholar 

  10. G. Avramovic-Cingara, Y. Ososkova, M.K. Jain, D.S. Wilkinson, Mater. Sci. Eng. A 516, 7 (2009)

    Article  Google Scholar 

  11. G.R. Speich, in Fundamentals of Dual Phase Steels, ed. by R.A. Kot, B.L. Bramfitt (AIME, New York, 1981), pp. 3–45

    Google Scholar 

  12. R.G. Davies, Metall. Trans. A 10, 1549 (1979)

    Article  Google Scholar 

  13. T.S. Byun, I.S. Kim, J. Mater. Sci. 28, 2923 (1993)

    Article  Google Scholar 

  14. M. Erdoğan, J. Mater. Sci. 37, 3623 (2002)

    Article  Google Scholar 

  15. R. Soto, W. Saikaly, X. Bano, C. Issartel, G. Rigaut, A. Charai, Acta Mater. 47, 3475 (1999)

    Article  Google Scholar 

  16. Z.G. Wang, S.H. Ai, ISIJ Int. 39, 747 (1999)

    Article  Google Scholar 

  17. A. Bag, K.K. Ray, E.S. Dwarakadasa, Metall. Trans. A. 30, 1193 (1999)

    Article  Google Scholar 

  18. A. Gural, S. Tekeli, T. Ando, J. Mater. Sci. 46, 7894 (2006)

    Article  Google Scholar 

  19. N.J. Kim, G. Thomas, Metall. Trans. A 12, 483 (1981)

    Article  Google Scholar 

  20. A. Bayram, A. Uğuz, U. Murat, Mater. Charact. 43, 259 (1999)

    Article  Google Scholar 

  21. A.H. Cottrell, B.A. Bilby, Proc. Phys. Soc. Lond. Ser. A 62, 49 (1949)

    Article  Google Scholar 

  22. M. Asadi, H. Palkowski, Mater. Sci. Forum 638–642, 3062 (2010)

    Article  Google Scholar 

  23. M. Asadi, N. Schulze, H. Palkowski, Adv. Mater. Res. 137, 35 (2010)

    Article  Google Scholar 

  24. M. Asadi, H. Palkowski, Steel Res. Int. 80, 499 (2009)

    Google Scholar 

  25. M. Asadia, B.C. De Coomanb, H. Palkowski, Mater. Sci. Eng. A 538, 42 (2012)

    Article  Google Scholar 

  26. M. Calcagnotto, Y. Adachi, D. Ponge, D. Raabe, Acta Mater. 59, 658 (2011)

    Article  Google Scholar 

  27. T. Gladman, The Physical Metallurgy of Microalloyed Steels (The Institute of Materials, Cambridge, 1997), pp. 148–152

    Google Scholar 

  28. M. Erdoğan, S. Tekeli, Mater. Des. 23, 597 (2002)

    Article  Google Scholar 

  29. F. George, V. Voort, Practical Applications Quantitative Metallography (ASTM 839, Philadelphia, 1984), pp. 65–72

    Google Scholar 

  30. Z. Li, T.S. Wang, X.J. Zhang, F.C. Zhang, Mater. Sci. Eng. A 552, 204 (2012)

    Article  Google Scholar 

  31. S. Gündüz, Mater. Sci. Eng. A 486, 63 (2008)

    Article  Google Scholar 

  32. G.R. Speich, R.L. Miller, in Structure and Properties of Dual Phase Steels, ed. by R.A. Kot, B.L. Bramfitt (AIME, New York, 1979), pp. 145–181

    Google Scholar 

  33. M. Türkmen, S. Gündüz, Ironmak. Steelmak. 38, 346 (2011)

    Article  Google Scholar 

  34. J.M. Moyer, G.S. Ansell, Metall. Trans. A 6, 1785 (1975)

    Article  Google Scholar 

  35. D.L. Bourell, A. Rizk, Acta Metall. 31, 609 (1983)

    Article  Google Scholar 

  36. R.G. Davies, Metall. Trans. A 9, 41 (1978)

    Article  Google Scholar 

  37. J.M. Rigsbee, J.K. Abraham, A.T. Davenport, J.E. Franklin, J.W. Pickens, in Structure and Properties of Dual Phase Steels, ed. by R.A. Kot, B.L. Bramfitt (AIME, New York, 1979), pp. 304–329

    Google Scholar 

  38. T. Waterschoot, K. Verbeken, B.C. De Cooman, ISIJ Int. 46, 138 (2006)

    Article  Google Scholar 

  39. G.R. Speich, A.B. Miller, in Fundamentals of Dual Phase Steels, ed. by R.A. Kot, B.L. Bramfitt (AIME, New York, 1981), pp. 279–304

    Google Scholar 

  40. R.O. Rocha, T.M.F. Melo, E.V. Pereloma, D.B. Santos, Mater. Sci. Eng. A 391, 296 (2005)

    Article  Google Scholar 

  41. A.J. Abdalla, L.R.O. Hein, M.S. Pereira, T.M. Hashimoto, Mater. Sci. Technol. 15, 1167 (1999)

    Article  Google Scholar 

  42. A.M. Sherman, R.G. Davis, W.T. Donlon, in Fundamentals of Dual Phase Steels, New York, ed. by R.A. Kot, B.L. Bramfitt (AIME, New York, 1981), pp. 85–94

    Google Scholar 

  43. M.J. Molaei, A. Ekrami, Mater. Sci. Eng. A 527, 235 (2009)

    Article  Google Scholar 

  44. R.G. Davies, in Fundamentals of Dual Phase Steels, ed. by R.A. Kot, B.L. Bramfitt (AIME, New York, 1981), pp. 265–277

    Google Scholar 

  45. A. Huseyin, K.Z. Havva, K. Ceylan, J. Iron Steel Res. 17, 73 (2010)

    Article  Google Scholar 

  46. M. Calcagnotto, D. Ponge, E. Demir, D. Raabe, Mater. Sci. Eng. A 527, 2738 (2010)

    Article  Google Scholar 

  47. H. Fischmeister, B. Karlsson, Z. Metall. 68, 311 (1977)

    Google Scholar 

  48. D. Das, P.P. Chattopadhyay, J. Mater. Sci. 44, 2957 (2009)

    Article  Google Scholar 

  49. P. Uggowitzer, H.P. Stuwe, Mater. Sci. Eng. A 55, 181 (1982)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Süleyman Gündüz.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Cite this article

Türkmen, M., Gündüz, S. Bake-Hardening Response of High Martensite Dual-Phase Steel with Different Morphologies and Volume Fractions. Acta Metall. Sin. (Engl. Lett.) 27, 279–289 (2014). https://doi.org/10.1007/s40195-014-0043-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-014-0043-5

Keywords

Navigation