Skip to main content
Log in

Understanding grain refinement in aluminium welding

Henry Granjon Prize 2015 winner category B: materials behaviour and weldability

  • Research Paper
  • Published:
Welding in the World Aims and scope Submit manuscript

Abstract

Grain refinement is an important opportunity to improve mechanical properties of fusion welds and the weldability (susceptibility to solidification cracking) of the base metal. In this study, grain refinement was achieved in aluminium welds through additions of grain refiner to the weld metal. Increasing grain refiner additions led to a decrease of the weld metal mean grain size (down to −86 %). The grain refinement efficiency was the highest in commercial pure Al (Alloy 1050A, Al 99.5), followed by Alloy 6082 (Al Si1MgMn) and Alloy 5083 (Al Mg4.5Mn0.7). To investigate this clear influence of alloy content on grain size, the undercooling parameters P and Q were calculated. Temperature measurements revealed that solidification parameters such as solidification growth rate or cooling rate vary significantly along the solidification front, dependent upon torch speed and alloy. On the basis of this comparison, an analytical approach was used to model the columnar to equiaxed transition (CET). Moreover, wavelength dispersive X-ray spectroscopy (WDS) and transmission electron microscopy (TEM) analyses revealed particles rich in Ti and B that are probably TiB2 particles coated by Al3Ti nucleating Al grains during solidification. Also, Ti/B contents needed in commercial filler wires to allow optimum weld metal grain refinement were calculated dependent upon base alloy and welding process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Schempp P, Cross CE, Pittner A, Rethmeier M (2013) Influence of grain size on mechanical properties of aluminium GTA weld metal. Weld World 57(3):293–304

    Google Scholar 

  2. Arata Y, Matsuda F, Mukae S, Katoh M (1973) Effect of weld solidification mode on tensile properties of aluminum weld metal. Trans JWRI 2(2):55–61

    Google Scholar 

  3. Tang Z, Schempp P, Seefeld T, Schwenk C, Vollertsen F (2011) Kornfeinung beim WIG- und Laserstrahlschweißen von Aluminiumlegierungen. DVS-Berichte 275, DVS-Verlag, Düsseldorf, pp 153–160 (in German)

    Google Scholar 

  4. Schempp P, Cross CE, Schwenk C, Rethmeier M (2012) Influence of Ti and B additions on grain size and weldability of aluminium alloy 6082. Weld World 56(9–10):95–104

    Article  Google Scholar 

  5. Dvornak MJ, Frost RH, Olson DL (1989) The weldability and grain refinement of Al-2.2Li-2.7Cu. Weld J 68(8):327-s–335-s

    Google Scholar 

  6. Mousavi MG, Cross CE, Grong Ø (1999) Effect of scandium and titanium-boron on grain refinement and hot cracking of aluminium alloy 7108. Sci Technol Weld Join 4(6):381–388

    Article  Google Scholar 

  7. Ram GDJ, Mitra TK, Raju MK, Sundaresan S (2000) Use of inoculants to refine weld solidification structure and improve weldability in type 2090 Al-Li alloy. Mat Sci Eng A 276(1–2):48–57

    Google Scholar 

  8. Ram GDJ, Mitra TK, Shankar V, Sundaresan S (2003) Microstructural refinement through inoculation of type 7020 Al-Zn-Mg alloy welds and its effect on hot cracking and tensile properties. J Mater Process Technol 142(1):174–181

    Article  Google Scholar 

  9. Schempp P, Cross CE, Schwenk C, Rethmeier M (2011) Weld metal grain refinement of aluminium alloy 5083 through controlled additions of Ti and B. MP Mater Test 53(10):604–609

    Article  Google Scholar 

  10. Easton MA, StJohn DH (2001) A model of grain refinement incorporating alloy constitution and potency of heterogeneous nucleant particles. Acta Mater 49(10):1867–1878

    Article  Google Scholar 

  11. Flemings MC (1974) Solidification processing. McGraw-Hill, New York

    Google Scholar 

  12. Rutter JW, Chalmers B (1953) A prismatic substructure formed during solidification of metals. Can J Phys 31:15–39

    Article  Google Scholar 

  13. Bäckerud L, Król E, Tamminen J (1986) Solidification characteristics of aluminium alloys – volume 1: wrought alloys. Skanaluminium Universitetsforlaget, Oslo

    Google Scholar 

  14. Altenpohl D (1970) Aluminium von innen betrachtet, 2nd edn. Aluminium-Verlag, Düsseldorf (in German)

    Google Scholar 

  15. Tarshis LA, Walker JL, Rutter JW (1971) Experiments on the solidification structure of alloy castings. Metall Trans 2:2589–2597

    Article  Google Scholar 

  16. Spittle JA, Sadli S (1995) Effect of alloy variables on grain refinement of binary aluminium alloys with Al-Ti-B. Mater Sci Technol 11:533–537

    Article  Google Scholar 

  17. Moriceau J (1972) Title unknown. Rev Alum 12:977–988

    Google Scholar 

  18. Maxwell I, Hellawell A (1975) A simple model for grain refinement during solidification. Acta Metall 23(2):229–237

    Article  Google Scholar 

  19. Greer AL, Bunn AM, Tronche A, Evans PV, Bristow DJ (2000) Modelling of inoculation of metallic melts: application to grain refinement of aluminium by Al-Ti-B. Acta Mater 48:2823–2835

    Article  Google Scholar 

  20. Bäckerud L, Johnsson M (1996) The relative importance of nucleation and growth mechanisms to control grain size in various aluminum alloys. In: Hale W (ed) Light metals. TMS, Warrendale, pp 679–685

    Google Scholar 

  21. Easton M, StJohn D (1999) Grain refinement of aluminum alloys: part II. Confirmation of, and a mechanism for, the solute paradigm. Metall Mater Trans A 30:1625–1633

    Article  Google Scholar 

  22. Rappaz M, Thévoz P (1987) Solute diffusion model for equiaxed dendritic growth. Acta Metall 35(7):1487–1497

    Article  Google Scholar 

  23. Chai G, Bäckerud L, Arnberg L (1995) Relation between grain size and coherency parameters in aluminium alloys. Mater Sci Technol 11:1099–1103

    Article  Google Scholar 

  24. Hunt JD (1984) Steady state columnar and equiaxed growth of dendrites and eutectic. Mater Sci Eng 65(1):75–83

    Article  Google Scholar 

  25. Easton M, StJohn D (1999) Grain refinement of aluminum alloys: part I. The nucleant ant solute paradigm – a review of the literature. Metall Mater Trans A 30:1613–1623

    Article  Google Scholar 

  26. Easton MA, StJohn DH (2000) Partitioning of titanium during solidification of aluminium alloys. Mater Sci Technol 16(9):993–1000

    Article  Google Scholar 

  27. Desnain P, Fautrelle Y, Meyer JL, Riquet JP, Durand F (1990) Prediction of equiaxed grain density in multicomponent alloys, stirred electromagnetically. Acta Metall Mater 38(8):1513–1523

    Article  Google Scholar 

  28. McCartney DG (1989) Grain refining of aluminium and its alloys using inoculants. Int Mater Rev 34(5):247–260

    Article  Google Scholar 

  29. Easton M, StJohn D (2005) An analysis of the relationship between grain size, solute content, and the potency and number density of nucleant particles. Metall Mater Trans A 36(7):1911–1920

    Article  Google Scholar 

  30. Massalski TB (1990) Binary phase diagrams – volume 1, 2nd edn. ASM International, Materials Park

    Google Scholar 

  31. Schloz JD (2010) Fundamentals of grain refining aluminum alloys. Light Met Age 4:30–37

    Google Scholar 

  32. Johnsson M (1994) Influence of Si and Fe on the grain refinement of aluminium. Z Metallkd 85(11):781–785

    Google Scholar 

  33. Johnsson M (1995) Grain refinement of aluminium studied by use of a thermal analytical technique. Thermochim Acta 256:107–121

    Article  Google Scholar 

  34. Easton MA, StJohn DH (2001) The effect of alloy content on the grain refinement of aluminium alloys. In: Anjier JL (ed) Light metals. TMS, Warrendale, pp 927–933

    Google Scholar 

  35. StJohn DH, Easton MA, Cao P, Qian M (2007) A new approach to the analysis of grain refinement. In: Proceedings of the 5th International Conference on Solidification Processing, pp 99–103

  36. Easton MA, StJohn DH (2008) Improved prediction of the grain size of aluminium alloys that includes the effect of cooling rate. Mat Sci Eng A 486:8–13

    Article  Google Scholar 

  37. Schneider W, StJohn DH, Greer AL (2008) Solidification Processing of Foundry Alloys: Mechanism of Grain Refinement of Aluminium – Almost All You Need to Know. In: Proceedings of the 11th International Conference on Aluminium Alloys 1, pp 383–392

  38. Tiller WA, Rutter JW (1956) The effect of growth conditions upon the solidification of a binary alloy. Can J Phys 34:96–121

    Article  Google Scholar 

  39. Murty BS, Kori SA, Chakraborty M (2002) Grain refinement of aluminium and its alloys by heterogeneous nucleation and alloying. Int Mater Rev 47(1):3–29

    Article  Google Scholar 

  40. Savage WF (1980) Solidification, segregation and weld imperfection. Weld World 18(5–6):89–113

    Google Scholar 

  41. Dvornak MJ, Frost RH, Olson DL (1991) Influence of solidification kinetics on aluminum weld grain refinement. Weld J 70(10):271-s–276-s

    Google Scholar 

  42. Kou S (2003) Welding metallurgy, 2nd edn. John Wiley & Sons, Hoboken

    Google Scholar 

  43. Savage WF, Aronson AH (1966) Preferred orientation in the weld fusion zone. Weld J 45(2):85-s–89-s

    Google Scholar 

  44. Tiller WA, Jackson KA, Rutter JW, Chalmers B (1953) The redistribution of solute atoms during the solidification of metals. Acta Metall 1(4):428–437

    Article  Google Scholar 

  45. Winegard WC, Chalmers B (1954) Supercooling and dendritic freezing in alloys. Trans Am Soc Metal 46:1214–1224

    Google Scholar 

  46. Savage WF, Lundin CD, Hrubec RJ (1968) Segregation and hot cracking in low-alloy quench and tempered steels. Weld J 47:420-s–425-s

    Google Scholar 

  47. Arata Y, Matsuda F, Matsui A (1974) Effect of welding condition on solidification structure in weld metal of aluminum alloy sheets. Trans JWRI 3(1):89–97

    Google Scholar 

  48. Kou S, Le Y (1986) Nucleation mechanisms and grain refining of weld metal. Weld J 65(12):305-s–313-s

    Google Scholar 

  49. Clarke JA (1998) Columnar-to-Equiaxed Grain Transition in Gas Tungsten Arc Welds in Aluminum-Copper Alloys. Dissertation, University of Waterloo

  50. Grong Ø, Cross CE (1999) A model for predicting weld metal grain refinement in G-V space. Proc Mater Res Soc (MRS) Fall Meet 578:431–438

    Article  Google Scholar 

  51. Burden MH, Hunt JD (1974) Cellular and dendritic growth I. J Cryst Growth 22:99–108

    Article  Google Scholar 

  52. Burden MH, Hunt JD (1974) Cellular and dendritic growth II. J Cryst Growth 22:109–116

    Article  Google Scholar 

  53. Cibula A (1949) The mechanism of grain refinement of sand castings in aluminium alloys. J I Met 76(4):321, et seqq

    Google Scholar 

  54. Crossley FA, Mondolfo LF (1951) Mechanism of grain refinement in aluminum alloys. Jom-J Met 191:1143–1148

    Google Scholar 

  55. Arnberg L, Bäckerud L, Klang H (1982) Grain refinement of aluminium, 2: intermetallic particles in Al-Ti-B-type master alloys for grain refinement of aluminium. Met Technol 9(11):7–13

    Article  Google Scholar 

  56. Johnsson M, Bäckerud L (1992) Nucleants in grain refined aluminium after addition of Ti- and B-containing master alloys. Z Metallkd 83:774–780

    Google Scholar 

  57. Johnsson M, Eriksson L (1998) Thermal expansion of Al and TiB2 in the temperature range 300 to 900 K and calculated lattice fit at the melting temperature for Al. Z Metallkd 89(7):478–480

    Google Scholar 

  58. Davies IG, Dennis JM, Hellawell A (1970) The nucleation of aluminum grains in alloys of aluminum with titanium and boron. Metall Trans 1:275–280

    Google Scholar 

  59. Schumacher P, Greer AL, Worth J, Evans PV, Kearns MA, Fisher P, Green AH (1998) New studies of nucleation mechanisms in aluminium alloys: implications for grain refinement practice. Mater Sci Technol 14(5):394–404

    Article  Google Scholar 

  60. Sigworth GK, Kuhn TA (2007) Grain refinement of aluminum casting alloys. Trans Am F 115:177–188

    Google Scholar 

  61. Schumacher P, Greer AL (1994) Enhanced heterogeneous nucleation of α-Al in amorphous aluminium alloys. Mat Sci Eng A 182:1335–1339

    Article  Google Scholar 

  62. Mohanty PS, Gruzleski JE (1995) Mechanism of grain refinement in aluminium. Acta Metall Mater 43(5):2001–2012

    Article  Google Scholar 

  63. Bunn AM, Evans PV, Bristow DJ, Greer AL (1998) Modeling of the effectiveness of Al-Ti-B refiners in commercial purity aluminium. In: Welch BJ (ed) Light metals. TMS, Warrendale, pp 963–968

    Google Scholar 

  64. Schneider WA, Quested TE, Greer AL, Cooper PS (2003) A comparison of the family of AlTiB refiners and their ability to achieve a fully equiaxed grain structure in DC castings. In: Crepeau PN (ed) Light metals. TMS, Warrendale, pp 953–959

    Google Scholar 

  65. Mondolfo LF, Farooq S, Tse C (1987) Grain refinement of aluminium alloys by titanium and boron. In: Proceedings of the 3rd International Conference on Solidification Processing, pp 133–136

  66. ASTM E 112–96 (2004) Standard test methods for determining average grain size. ASTM International, West Conshohocken

    Google Scholar 

  67. Fritz AH, Schulze G (2007) Fertigungstechnik, 8th edn. Springer, Berlin (in German)

    Google Scholar 

  68. Fahrenwaldt HJ, Schuler V (2006) Praxiswissen Schweißtechnik. Werkstoffe, Prozesse, Fertigung, 2nd edn. Vieweg & Sohn Verlag, Wiesbaden (in German)

  69. Dvornak MJ, Frost RH, Olson DL (1990) Effects of grain refinement of aluminum weldability. In: Patterson RA (ed) Weldability of materials. ASM, Materials Park, pp 289–295

    Google Scholar 

  70. Dev S, Stuart AA, Kumaar RCRD, Murty BS, Rao KP (2007) Effect of scandium additions on microstructure and mechanical properties of Al-Zn-Mg alloy welds. Mat Sci Eng A 467(1–2):132–138

    Article  Google Scholar 

  71. Greer AL (2003) Grain refinement of alloys by inoculation of melts. Philos Trans R Soc Lond 361:479–495

    Article  Google Scholar 

  72. Spittle JA, Cushway AA (1983) Influences of superheat and grain structure on hot-tearing susceptibilities of Al-Cu alloy castings. Met Technol 10(1):6–13

    Article  Google Scholar 

  73. Turchin AN, Zuijderwijk M, Pool J, Eskin DG, Katgerman L (2007) Feathery grain growth during solidification under forced flow conditions. Acta Mater 55(11):3795–3801

    Article  Google Scholar 

  74. Schempp P, Cross CE, Pittner A, Rethmeier M (2013) Influence of solute content and solidification parameters on grain refinement of aluminum weld metal. Metall Mater Trans A 44(7):3198–3210

    Article  Google Scholar 

  75. Tøndel PA (1994) Grain Refinement of Hypoeutectic Al-Si Alloys. Dissertation, Norwegian Institute of Technology

  76. Tronche A, Greer AL (2000) Design of grain refiners for aluminium alloys. In: Peterson RD (ed) Light metals. TMS, Warrendale, pp 827–832

    Google Scholar 

  77. StJohn DH, Qian M, Easton MA, Cao P, Hildebrand Z (2005) Grain refinement of magnesium alloys. Metall Mater Trans A 36(7):1669–1679

    Article  Google Scholar 

  78. Schempp P, Cross CE, Pittner A, Oder G, Neumann RS, Rooch H, Dörfel I, Österle W, Rethmeier M (2014) Solidification of GTA aluminum weld metal: part I – grain morphology dependent upon alloy composition and grain refiner content. Weld J 93(2):53s–59s

    Google Scholar 

  79. Ganaha T, Pearce BP, Kerr HW (1980) Grain structures in aluminium alloy GTA welds. Metall Trans A 11(8):1351–1359

    Article  Google Scholar 

  80. Kou S, Le Y (1988) Welding parameters and the grain structure of weld metal – a thermodynamic consideration. Metall Trans A 19(4):1075–1082

    Article  Google Scholar 

  81. Schempp P, Cross CE, Pittner A, Rethmeier M (2014) Grain structure in aluminium TIG welds. Weld Cut 13(3):177–181

    Google Scholar 

  82. Schempp P, Tang Z, Cross CE, Pittner A, Seefeld T, Rethmeier M (2012) Influence of Alloy and Solidification Parameters on Grain Refinement in Aluminum Weld Metal due to Inoculation. In: Proceedings of the 9th International Trends in Welding Research Conference, ASM International, Materials Park, pp 98–107

  83. Schempp P, Cross CE, Pittner A, Rethmeier M (2014) Solidification of GTA aluminum weld metal: part II – thermal conditions and model for columnar-to-equiaxed transition. Weld J 93(3):69s–77s

    Google Scholar 

  84. Kurz W, Fisher DJ (1986) Fundamentals of solidification, 3rd edn. Trans Tech Publications, Zürich

    Google Scholar 

  85. Yunjia H, Frost RH, Olson DL, Edwards GR (1989) Grain refinement of aluminum weld metal. Weld J 68(7):280-s–289-s

    Google Scholar 

  86. Guzowski MM, Sigworth GK, Sentner DA (1987) The role of boron in the grain refinement of aluminum with titanium. Metall Trans A 18:603–619

    Article  Google Scholar 

  87. Hufnagel W (1983) Aluminium-Taschenbuch, 14th edn. Aluminium-Verlag, Düsseldorf (in German)

    Google Scholar 

  88. Block-Bolten A, Eagar TW (1984) Metal vaporization from weld pools. Metall Trans B 15:461–469

    Article  Google Scholar 

  89. Kim JH, Frost RH, Olson DL (1990) Effect of electrochemical reactions on submerged Arc weld metal compositions. Weld J 69(12):446-s–453-s

    Google Scholar 

  90. DIN EN ISO 18273 (2004) Welding consumables – wire electrodes, wires and rods for welding of aluminium and aluminium alloys – classification. Deutsches Institut für Normung, Berlin

    Google Scholar 

  91. AWS A5.10/A5.10M (2007) Specification for bare aluminum and aluminum-alloy welding electrodes and rods. American Welding Society, Doral

    Google Scholar 

Download references

Acknowledgments

The first author (Philipp Schempp) is very grateful to his PhD supervisors B. Tonn (TU Clausthal), C.E. Cross (Los Alamos National Laboratory), A. Pittner (BAM) and C. Schwenk (formerly BAM). Furthermore, the support by H. Hayen (formerly Aljo Aluminium-Bau Jonuscheit GmbH, Germany) and P. Gudde (KBM Affilips B.V., Netherlands) for their very kind donation of Alloy 5083 plates (Alijo) and Al Ti5B1 grain refiner (KBM Affilips) is appreciated very much. The authors also would like to thank M. Richter and H. Hollesch (workshops) G. Oder (WDS analysis), H. Rooch, I. Dörfel and W. Österle (TEM analysis), M. Marten and N. Stojkic (metallography), H. Strehlau (ICP-OES chemical analysis), D. Köhler (casting of ingots) and W. Großmann (machining of inserts) for their great support at BAM.

The authors are very thankful to the Research Association on Welding and Allied Processes of the DVS for its support and to the Program for Funding of Industrial Research and Technology (IGF) of the German Federal Ministry of Economics and Technology for funding the research project this study is based on.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Schempp.

Additional information

Doc. IIW-2564, recommended for publication by Commission IX “Behaviour of Metals Subjected to Welding.”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schempp, P., Rethmeier, M. Understanding grain refinement in aluminium welding. Weld World 59, 767–784 (2015). https://doi.org/10.1007/s40194-015-0251-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40194-015-0251-2

Keywords (IIW Thesaurus)

Navigation