Skip to main content
Log in

Accurate Effective Stress Measures: Predicting Creep Life for 3D Stresses Using 2D and 1D Creep Rupture Simulations and Data

  • Technical Article
  • Published:
Integrating Materials and Manufacturing Innovation Aims and scope Submit manuscript

Abstract

Operating structural components experience complex loading conditions resulting in 3D stress states. Current design practice estimates multiaxial creep rupture life by mapping a general state of stress to a uniaxial creep rupture correlation using effective stress measures. The data supporting the development of effective stress measures are nearly always only uniaxial and biaxial, as 3D creep rupture tests are not widely available. This limitation means current effective stress measures must extrapolate from 2D to 3D stress states, potentially introducing extrapolation error. In this work, we use a physics-based, crystal plasticity finite element model to simulate uniaxial, biaxial, and triaxial creep rupture. We use the virtual dataset to assess the accuracy of current and novel effective stress measures in extrapolating from 2D to 3D stresses and also explore how the predictive accuracy of the effective stress measures might change if experimental 3D rupture data was available. We confirm these conclusions, based on simulation data, against multiaxial creep rupture experimental data for several materials, drawn from the literature. The results of the virtual experiments show that calibrating effective stress measures using triaxial test data would significantly improve accuracy and that some effective stress measures are more accurate than others, particularly for highly triaxial stress states. Results obtained using experimental data confirm the numerical findings and suggest that a unified effective stress measure should include an explicit dependence on the first stress invariant, the maximum tensile principal stress, and the von Mises stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Henceforth, we refer to a triaxial stress state as any stress tensor with all three principal values with non-negligible magnitudes.

References

  1. Katz A, Ranjan D (2019) Advances towards elastic-perfectly plastic simulation of the core of printed circuit heat exchangers. In: Proceedings of the 2019 ASME pressure vessels and piping conference, vol 58943, American Society of Mechanical Engineers, pp PVP2019-93807

  2. Rovinelli A, Messner MC, Guosheng Y, Sham TL (2019) Initial study of notch sensitivity of Grade 91 using mechanisms motivated crystal plasticity finite element method. Tech. Rep., Argonne National Laboratory ANL-ART-171

  3. Hayhurst D (1973) A biaxial-tension creep-rupture testing machine. J Strain Anal 8(2):119–123

    Article  Google Scholar 

  4. Dyson BF, Mclean D (1977) Creep of nimonic 80A in torsion and tension. Metal Sci 11(2):37–45. https://doi.org/10.1179/msc.1977.11.2.37

    Article  CAS  Google Scholar 

  5. Stanzl S, Argon A, Tschegg E (1983) Diffusive intergranular cavity growth in creep in tension and torsion. Acta Metall 31(6):833–843

    Article  Google Scholar 

  6. Kennedy C, Harms W, Douglas D (1959) Multiaxial creep studies on inconel at 1500 F. J Basic Eng 81(4):599–607

    Article  Google Scholar 

  7. Chubb EJ, Bolton CJ (1980) Stress state dependence of creep deformation and fracture in AISI type 316 stainless steel. Mechanical Engineering Publications Limited, United Kingdom

    Google Scholar 

  8. Hayhurst D, Felce I (1986) Creep rupture under tri-axial tension. Eng Fract Mech 25(5):645–664. https://doi.org/10.1016/0013-7944(86)90030-5

    Article  Google Scholar 

  9. Sakane M, Hosokawa T (2001) Biaxial and triaxial creep testing of type 304 stainless steel at 923 k. In: IUTAM symposium on creep in structures, Springer, pp 411–418

  10. Larson FR, Miller J (1952) A time-temperature relationship for rupture and creep stresses. Trans ASME 74:765–775

    Google Scholar 

  11. Tresca HE (1864) Sur l’ecoulement des corps solides soumis a de fortes pressions, Imprimerie de Gauthier-Villars successeur de Mallet-Bachelier, rue de Seine

  12. Mises RV (1913) Mechanik der festen körper im plastisch-deformablen zustand. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, pp 582–592

  13. Hayhurst D (1972) Creep rupture under multi-axial states of stress. J Mech Phys Solids 20(6):381–382. https://doi.org/10.1016/0022-5096(72)90015-4

    Article  Google Scholar 

  14. Leckie F, Hayhurst D (1974) Creep rupture of structures. Proc R Soc Lond A Math Phys Sci 340(1622):323–347

    CAS  Google Scholar 

  15. Leckie F, Hayhurst D (1977) Constitutive equations for creep rupture. Acta Metall 25(9):1059–1070

    Article  Google Scholar 

  16. Hayhurst DR, Leckie FA, Morrison CJ (1978) Creep rupture of notched bars. Proc R Soc A Math Phys Eng Sci 360(1701):243–264. https://doi.org/10.1098/rspa.1978.0066

    Article  CAS  Google Scholar 

  17. Huddleston R (1985) An improved multiaxial creep-rupture strength criterion. J Press Vessel Technol 107(4):421–429

    Article  Google Scholar 

  18. Huddleston R (1993) Assessment of an improved multiaxial strength theory based on creep-rupture data for type 316 stainless steel. J Press Vessel Technol 115(2):177–184

    Article  CAS  Google Scholar 

  19. Huddleston R (1993) Assessment of an improved multiaxial strength theory based on creep-rupture data for Inconel 600. Tech. Rep., Oak Ridge National Laboratory (ORNL), Oak Ridge, TN. https://doi.org/10.2172/10168640

  20. American Society of Mechanical Engineers (2019) ASME Boiler and Pressure Vessel Code Section III, Division 5. American Society of Mechanical Engineers

  21. American Society of Mechanical Engineers and American Petroleum Institute (2016) Fitness-For-Service, API 579–1/ASME FFS-1. American Society of Mechanical Engineers and American Petroleum Institute

  22. EDF Energy Nuclear Generation Ltd (2012) Assessment Procedure for the High Temperature Response of Structures, R5. British. Energy

  23. AFCEN (2015) RCC-MRx, AFCEN

  24. Nassif O, Truster TJ, Ma R, Cochran KB, Parks DM, Messner MC, Sham T-L (2019) Combined crystal plasticity and grain boundary modeling of creep in ferritic-martensitic steels: I. Theory and implementation. Modell Simul Mater Sci Eng 27(7):075009. https://doi.org/10.1088/1361-651X/ab359c

    Article  CAS  Google Scholar 

  25. Kloc L, Sklenička V (1997) Transition from power-law to viscous creep behaviour of p-91 type heat-resistant steel. Mater Sci Eng A 234:962–965

    Article  Google Scholar 

  26. Haney EM, Dalle F, Sauzay M, Vincent L, Tournié I, Allais L, Fournier B (2009) Macroscopic results of long-term creep on a modified 9Cr–1Mo steel. Mater Sci Eng A 510:99–103

    Article  Google Scholar 

  27. Sham T-L, Needleman A (1983) Effects of triaxial stressing on creep cavitation of grain boundaries. Acta Metall 31(6):919–926. https://doi.org/10.1016/0001-6160(83)90120-7

    Article  Google Scholar 

  28. Needleman A, Rice JR (1980) Plastic creep flow effects in the diffusive cavitation of grain boundaries. Acta Metall 28(10):1315–1332. https://doi.org/10.1016/0001-6160(80)90001-2

    Article  CAS  Google Scholar 

  29. Van Der Giessen E, der Burg MWD, Needleman A, Tvergaard V (1995) Void growth due to creep and grain boundary diffusion at high triaxialities. J Mech Phys Solids 43(1):123–165. https://doi.org/10.1016/0022-5096(94)00059-E

    Article  Google Scholar 

  30. Van Der Giessen E, Tvergaard V (1996) Micromechanics of intergranular creep failure under cyclic loading. Acta Mater 44(7):2697–2710

    Article  Google Scholar 

  31. Onck P, Van Der Giessen E (1998) Growth of an initially sharp crack by grain boundary cavitation. J Mech Phys Solids 47(1):99–139. https://doi.org/10.1016/S0022-5096(98)00078-7

    Article  Google Scholar 

  32. Raj R, Ashby M (1971) On grain boundary sliding and diffusional creep. Metall Trans 2(4):1113–1127

    Article  Google Scholar 

  33. Ashby M (1972) Boundary defects, and atomistic aspects of boundary sliding and diffusional creep. Surf Sci 31:498–542

    Article  CAS  Google Scholar 

  34. Crossman F, Ashby M (1975) The non-uniform flow of polycrystals by grain-boundary sliding accommodated by power-law creep. Acta Metall 23(4):425–440

    Article  CAS  Google Scholar 

  35. Quey R, Dawson P, Barbe F (2011) Large-scale 3d random polycrystals for the finite element method: generation, meshing and remeshing. Comput Methods Appl Mech Eng 200(17–20):1729–1745

    Article  Google Scholar 

  36. Manjoine MJ (1975) Ductility indices at elevated temperature. J Eng Mater Technol 97(2):156–161. https://doi.org/10.1115/1.3443276

    Article  Google Scholar 

  37. Cocks A, Ashby M (1982) On creep fracture by void growth. Prog Mater Sci 27(3–4):189–244

    Article  CAS  Google Scholar 

  38. Spindler M (2007) An improved method for calculation of creep damage during creep–fatigue cycling. Mater Sci Technol 23(12):1461–1470

    Article  CAS  Google Scholar 

  39. Yatomi M, Nikbin K (2014) Numerical prediction of creep crack growth in different geometries using simplified multiaxial void growth model. Mater High Temp 31(2):141–147

    Article  CAS  Google Scholar 

  40. le Graverend J-B, Adrien J, Cormier J (2017) Ex-situ X-ray tomography characterization of porosity during high-temperature creep in a Ni-based single-crystal superalloy: toward understanding what is damage. Mater Sci Eng A 695:367–378

    Article  Google Scholar 

  41. Andrea R (2021) Data for article accurate effective stress measures: predicting creep life for 3d stresses using 2d and 1d creep rupture simulations and data. https://doi.org/10.17632/kcbcnywygr.1, Mendeley Data, V1

  42. Kimura K, Kushima H, Sawada K (2009) Long-term creep deformation property of modified 9Cr–1Mo steel. Mater Sci Eng A 510–511(C):58–63. https://doi.org/10.1016/j.msea.2008.04.095

    Article  CAS  Google Scholar 

  43. Kimura K, Sawada K, Kushima H (2010) Creep rupture ductility of creep strength enhanced ferritic steels, American Society of Mechanical Engineers. Press Vessels Pip Div 6:837–846. https://doi.org/10.1115/PVP2010-25297

    Article  Google Scholar 

  44. Jones E, Oliphant T, Peterson P et al (2001) SciPy: open source scientific tools for Python. http://www.scipy.org/

  45. Byrd RH, Gilbert JC, Nocedal J (2000) A trust region method based on interior point techniques for nonlinear programming. Math Program 89(1):149–185

    Article  Google Scholar 

  46. Abe F (2016) Heat-to-heat variation in creep life and fundamental creep rupture strength of 18Cr–8Ni, 18Cr–12Ni–mo, 18Cr–10Ni–Ti, and 18Cr–12Ni–Nb stainless steels. Metall Mater Trans A 47(9):4437–4454

    Article  CAS  Google Scholar 

  47. Henry BS, Luxmoore AR (1997) The stress triaxiality constraint and the Q-value as a ductile fracture parameter. Eng Fract Mech 57(4):375–390. https://doi.org/10.1016/s0013-7944(97)00031-3

    Article  Google Scholar 

  48. Messner MC, Nassif O, Ma R, Truster TJ, Cochran K, Parks D, Sham T-L (2019) Combined crystal plasticity and grain boundary modeling of creep in ferritic-martensitic steels: II. The effect of stress and temperature on engineering and microstructural properties. Modell Simul Mater Sci Eng 27(7):075010. https://doi.org/10.1088/1361-651X/ab359f

    Article  CAS  Google Scholar 

  49. Nicolas A, Messner MC, Sham T-L (2021) A method for predicting failure statistics for steady state elevated temperature structural components. Int J Press Vessels Pip 192:104363

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research was sponsored by the US Department of Energy, under Contract No. DEAC02-06CH11357 with Argonne National Laboratory, managed and operated by UChicago Argonne LLC and Contract No. DE-AC07-05ID14517 with Idaho National Laboratory, managed and operated by Battelle Energy Alliance. Programmatic direction was provided by the Office of Nuclear Reactor Deployment of the Office of Nuclear Energy. The authors gratefully acknowledge the support provided by Sue Lesica, Federal Manager, Advanced Materials, Advanced Reactor Technologies (ART) Program, Diana Li, Federal Manager, Microreactor Program, and John H. Jackson of Idaho National Laboratory, National Technical Director, Microreactor Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Rovinelli.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rovinelli, A., Messner, M.C., Parks, D.M. et al. Accurate Effective Stress Measures: Predicting Creep Life for 3D Stresses Using 2D and 1D Creep Rupture Simulations and Data. Integr Mater Manuf Innov 10, 627–643 (2021). https://doi.org/10.1007/s40192-021-00228-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40192-021-00228-1

Keywords

Navigation