Skip to main content

Advertisement

Log in

Fundamental Principles of Cancer Biology: Does It Have Relevance to the Perioperative Period?

  • Cancer Anesthesia (B Riedel, Section Editor)
  • Published:
Current Anesthesiology Reports Aims and scope Submit manuscript

Abstract

Malignant tumors are characterized by their ability to metastasize, which is the main cause of cancer-related mortality. Besides intrinsic alternations in cancer cells, the tumor microenvironment plays a pivotal role in tumor growth and metastasis. Ample evidence suggests that the perioperative period and the excision of the primary tumor can promote the development of metastases and can influence long-term cancer patient outcomes. The role of cancer biology and its impact on the perioperative period are of increasing interest. This review will present evidence regarding fundamental principles of cancer biology, especially tumor microenvironment, and discuss new therapeutic opportunities in the perioperative timeframe. We will also discuss the regulatory signaling that could be relevant to various aspects of surgery and surgical responses, which could facilitate the metastatic process by directly or indirectly affecting malignant tissues and the tumor microenvironment. We address the influences of surgery-related stress, anesthetic and analgesic agents, blood transfusion, hypothermia, and β-adrenergic blockade administration on tumor growth and metastasis. Through an improved understanding of these processes, we will provide suggestions for potential new perioperative approaches aimed at improving treatment outcomes of cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.

    Article  CAS  PubMed  Google Scholar 

  2. •• Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100(1):57–70. This paper provides a very important summary of the key factors that play a role in promoting cancer growth and progression.

  3. Coussens LM, Zitvogel L, Palucka AK. Neutralizing tumor-promoting chronic inflammation: a magic bullet? Science. 2013;339(6117):286–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. •• Horowitz M, et al. Exploiting the critical perioperative period to improve long-term cancer outcomes. Nat Rev Clin Oncol. 2015;12(4):213–26. This paper summarizes various opportunities in the perioperative time period.

  5. Murray PJ, Wynn TA. Obstacles and opportunities for understanding macrophage polarization. J Leukoc Biol. 2011;89(4):557–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dalton HJ, et al. Monocyte subpopulations in angiogenesis. Cancer Res. 2014;74(5):1287–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lewis CE, Pollard JW. Distinct role of macrophages in different tumor microenvironments. Cancer Res. 2006;66(2):605–12.

    Article  CAS  PubMed  Google Scholar 

  8. Alizadeh D, Larmonier N. Chemotherapeutic targeting of cancer-induced immunosuppressive cells. Cancer Res. 2014;74(10):2663–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. DeNardo DG, et al. Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discov. 2011;1(1):54–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ong SM, et al. Macrophages in human colorectal cancer are pro-inflammatory and prime T cells towards an anti-tumour type-1 inflammatory response. Eur J Immunol. 2012;42(1):89–100.

    Article  CAS  PubMed  Google Scholar 

  11. Chanmee T, et al. Tumor-associated macrophages as major players in the tumor microenvironment. Cancers (Basel). 2014;6(3):1670–90.

    Article  CAS  Google Scholar 

  12. Joyce JA, Pollard JW. Microenvironmental regulation of metastasis. Nat Rev Cancer. 2009;9(4):239–52.

    Article  CAS  PubMed  Google Scholar 

  13. Qian BZ, Pollard JW. Macrophage diversity enhances tumor progression and metastasis. Cell. 2010;141(1):39–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Su S, et al. A positive feedback loop between mesenchymal-like cancer cells and macrophages is essential to breast cancer metastasis. Cancer Cell. 2014;25(5):605–20.

    Article  CAS  PubMed  Google Scholar 

  15. Tjiu JW, et al. Tumor-associated macrophage-induced invasion and angiogenesis of human basal cell carcinoma cells by cyclooxygenase-2 induction. J Invest Dermatol. 2009;129(4):1016–25.

    Article  CAS  PubMed  Google Scholar 

  16. Galon J, et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science. 2006;313(5795):1960–4.

    Article  CAS  PubMed  Google Scholar 

  17. Gooden MJ, et al. The prognostic influence of tumour-infiltrating lymphocytes in cancer: a systematic review with meta-analysis. Br J Cancer. 2011;105(1):93–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Loi S, et al. Tumor infiltrating lymphocytes are prognostic in triple negative breast cancer and predictive for trastuzumab benefit in early breast cancer: results from the FinHER trial. Ann Oncol. 2014;25(8):1544–50.

    Article  CAS  PubMed  Google Scholar 

  19. Swartz MA, et al. Tumor microenvironment complexity: emerging roles in cancer therapy. Cancer Res. 2012;72(10):2473–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Reissfelder C, et al. Tumor-specific cytotoxic T lymphocyte activity determines colorectal cancer patient prognosis. J Clin Invest. 2015;125(2):739–51.

    Article  PubMed  Google Scholar 

  21. Gottschalk A, et al. Review article: the role of the perioperative period in recurrence after cancer surgery. Anesth Analg. 2010;110(6):1636–43.

    Article  PubMed  Google Scholar 

  22. Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science. 2011;331(6024):1565–70.

    Article  CAS  PubMed  Google Scholar 

  23. Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science. 2003;299(5609):1057–61.

    Article  CAS  PubMed  Google Scholar 

  24. Liu S, et al. Prognostic significance of FOXP3+ tumor-infiltrating lymphocytes in breast cancer depends on estrogen receptor and human epidermal growth factor receptor-2 expression status and concurrent cytotoxic T-cell infiltration. Breast Cancer Res. 2014;16(5):432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yuan XL, et al. Gastric cancer cells induce human CD4+Foxp3+ regulatory T cells through the production of TGF-beta1. World J Gastroenterol. 2011;17(15):2019–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Di Mitri D, et al. Tumour-infiltrating Gr-1+ myeloid cells antagonize senescence in cancer. Nature. 2014;515(7525):134–7.

    Article  CAS  PubMed  Google Scholar 

  27. Diaz-Montero CM, Finke J, Montero AJ. Myeloid-derived suppressor cells in cancer: therapeutic, predictive, and prognostic implications. Semin Oncol. 2014;41(2):174–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ostrand-Rosenberg S, Sinha P. Myeloid-derived suppressor cells: linking inflammation and cancer. J Immunol. 2009;182(8):4499–506.

    Article  CAS  PubMed  Google Scholar 

  29. Chouaib S, et al. Endothelial cells as key determinants of the tumor microenvironment: interaction with tumor cells, extracellular matrix and immune killer cells. Crit Rev Immunol. 2010;30(6):529–45.

    Article  CAS  PubMed  Google Scholar 

  30. Franses JW, et al. Stromal endothelial cells directly influence cancer progression. Sci Transl Med. 2011;3(66):66ra5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cirri P, Chiarugi P. Cancer-associated-fibroblasts and tumour cells: a diabolic liaison driving cancer progression. Cancer Metastasis Rev. 2012;31(1–2):195–208.

    Article  PubMed  Google Scholar 

  32. Orimo A, et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell. 2005;121(3):335–48.

    Article  CAS  PubMed  Google Scholar 

  33. Heaney A, Buggy DJ. Can anaesthetic and analgesic techniques affect cancer recurrence or metastasis? Br J Anaesth. 2012;109(Suppl 1):i17–28.

    Article  PubMed  Google Scholar 

  34. Kavanagh T, Buggy DJ. Can anaesthetic technique effect postoperative outcome? Curr Opin Anaesthesiol. 2012;25(2):185–98.

    Article  CAS  PubMed  Google Scholar 

  35. Cassinello F, et al. Cancer surgery: how may anesthesia influence outcome? J Clin Anesth. 2015;27(3):262–72.

    Article  PubMed  Google Scholar 

  36. Hiller J, Brodner G, Gottschalk A. Understanding clinical strategies that may impact tumour growth and metastatic spread at the time of cancer surgery. Best Pract Res Clin Anaesthesiol. 2013;27(4):427–39.

    Article  PubMed  Google Scholar 

  37. Lee JW, et al. Surgical stress promotes tumor growth in ovarian carcinoma. Clin Cancer Res. 2009;15(8):2695–702.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Vogelaar FJ, et al. Impact of anaesthetic technique on survival in colon cancer: a review of the literature. Gastroenterol Rep (Oxf). 2015. doi:https://doi.org/10.1093/gastro/gov001.

  39. Melamed R, et al. Suppression of natural killer cell activity and promotion of tumor metastasis by ketamine, thiopental, and halothane, but not by propofol: mediating mechanisms and prophylactic measures. Anesth Analg. 2003;97(5):1331–9.

    Article  CAS  PubMed  Google Scholar 

  40. Shapiro J, et al. Anesthetic drugs accelerate the progression of postoperative metastases of mouse tumors. J Clin Invest. 1981;68(3):678–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tavare AN, et al. Cancer recurrence after surgery: direct and indirect effects of anesthetic agents. Int J Cancer. 2012;130(6):1237–50.

    Article  CAS  PubMed  Google Scholar 

  42. Sessler DI, et al. Can regional analgesia reduce the risk of recurrence after breast cancer? Methodology of a multicenter randomized trial. Contemp Clin Trials. 2008;29(4):517–26.

    Article  PubMed  Google Scholar 

  43. Sylla P, Kirman I, Whelan RL. Immunological advantages of advanced laparoscopy. Surg Clin North Am. 2005;85(1):1–18, vii.

  44. Shakhar G, Ben-Eliyahu S. Potential prophylactic measures against postoperative immunosuppression: could they reduce recurrence rates in oncological patients? Ann Surg Oncol. 2003;10(8):972–92.

    Article  PubMed  Google Scholar 

  45. Lennard TW, et al. The influence of surgical operations on components of the human immune system. Br J Surg. 1985;72(10):771–6.

    Article  CAS  PubMed  Google Scholar 

  46. Takabayashi A, et al. Change in mitochondrial membrane potential in peripheral blood lymphocytes, especially in natural killer cells, is a possible marker for surgical stress on the immune system. World J Surg. 2003;27(6):659–65.

    Article  PubMed  Google Scholar 

  47. Evans C, et al. Impact of surgery on immunologic function: comparison between minimally invasive techniques and conventional laparotomy for surgical resection of colorectal tumors. Am J Surg. 2009;197(2):238–45.

    Article  CAS  PubMed  Google Scholar 

  48. Tai LH, et al. A mouse tumor model of surgical stress to explore the mechanisms of postoperative immunosuppression and evaluate novel perioperative immunotherapies. J Vis Exp. 2014;85:e51253. doi:https://doi.org/10.3791/51253

    Google Scholar 

  49. Seth R, et al. Surgical stress promotes the development of cancer metastases by a coagulation-dependent mechanism involving natural killer cells in a murine model. Ann Surg. 2013;258(1):158–68.

    Article  PubMed  Google Scholar 

  50. Sammour T, et al. The humoral response after laparoscopic versus open colorectal surgery: a meta-analysis. J Surg Res. 2010;164(1):28–37.

    Article  PubMed  Google Scholar 

  51. Torres A, et al. Cytokine response in the postoperative period after surgical treatment of benign adnexal masses: comparison between laparoscopy and laparotomy. Surg Endosc. 2007;21(10):1841–8.

    Article  CAS  PubMed  Google Scholar 

  52. Wichmann MW, et al. Immunological effects of laparoscopic vs open colorectal surgery: a prospective clinical study. Arch Surg. 2005;140(7):692–7.

    Article  PubMed  Google Scholar 

  53. Desborough JP. The stress response to trauma and surgery. Br J Anaesth. 2000;85(1):109–17.

    Article  CAS  PubMed  Google Scholar 

  54. Reiche EM, Nunes SO, Morimoto HK. Stress, depression, the immune system, and cancer. Lancet Oncol. 2004;5(10):617–25.

    Article  CAS  PubMed  Google Scholar 

  55. Kurosawa S, Kato M. Anesthetics, immune cells, and immune responses. J Anesth. 2008;22(3):263–77.

    Article  PubMed  Google Scholar 

  56. Melamed R, et al. Marginating pulmonary-NK activity and resistance to experimental tumor metastasis: suppression by surgery and the prophylactic use of a beta-adrenergic antagonist and a prostaglandin synthesis inhibitor. Brain Behav Immun. 2005;19(2):114–26.

    Article  CAS  PubMed  Google Scholar 

  57. Goldfarb Y, Ben-Eliyahu S. Surgery as a risk factor for breast cancer recurrence and metastasis: mediating mechanisms and clinical prophylactic approaches. Breast Dis. 2006;26:99–114.

    Article  PubMed  Google Scholar 

  58. Moreno-Smith M, Lutgendorf SK, Sood AK. Impact of stress on cancer metastasis. Future Oncol. 2010;6(12):1863–81.

    Article  PubMed  Google Scholar 

  59. Page GG. Surgery-induced immunosuppression and postoperative pain management. AACN Clin Issues. 2005;16(3):302–9 (quiz 416–8).

    Article  PubMed  Google Scholar 

  60. Amato A, Pescatori M. Perioperative blood transfusions for the recurrence of colorectal cancer. Cochrane Database Syst Rev. 2006;(1):CD005033.

  61. Snyder GL, Greenberg S. Effect of anaesthetic technique and other perioperative factors on cancer recurrence. Br J Anaesth. 2010;105(2):106–15.

    Article  CAS  PubMed  Google Scholar 

  62. Perez-Sayans M, et al. Beta-adrenergic receptors in cancer: therapeutic implications. Oncol Res. 2010;19(1):45–54.

    Article  CAS  PubMed  Google Scholar 

  63. Wu WK, et al. Cyclooxygenase-2 in tumorigenesis of gastrointestinal cancers: an update on the molecular mechanisms. Cancer Lett. 2010;295(1):7–16.

    Article  CAS  PubMed  Google Scholar 

  64. Mathew B, et al. The novel role of the mu opioid receptor in lung cancer progression: a laboratory investigation. Anesth Analg. 2011;112(3):558–67.

    Article  CAS  PubMed  Google Scholar 

  65. van der Bij GJ, et al. The perioperative period is an underutilized window of therapeutic opportunity in patients with colorectal cancer. Ann Surg. 2009;249(5):727–34.

    Article  PubMed  Google Scholar 

  66. Masur K, et al. Norepinephrine-induced migration of SW 480 colon carcinoma cells is inhibited by beta-blockers. Cancer Res. 2001;61(7):2866–9.

    CAS  PubMed  Google Scholar 

  67. Kerros C, et al. Reduction of cell proliferation and potentiation of Fas-induced apoptosis by the selective kappa-opioid receptor agonist U50 488 in the multiple myeloma LP-1 cells. J Neuroimmunol. 2010;220(1–2):69–78.

    Article  CAS  PubMed  Google Scholar 

  68. Sood AK, et al. Adrenergic modulation of focal adhesion kinase protects human ovarian cancer cells from anoikis. J Clin Invest. 2010;120(5):1515–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Thaker PH, et al. Chronic stress promotes tumor growth and angiogenesis in a mouse model of ovarian carcinoma. Nat Med. 2006;12(8):939–44.

    Article  CAS  PubMed  Google Scholar 

  70. Traynor C, Hall GM. Endocrine and metabolic changes during surgery: anaesthetic implications. Br J Anaesth. 1981;53(2):153–60.

    Article  CAS  PubMed  Google Scholar 

  71. Amato AC, Pescatori M. Effect of perioperative blood transfusions on recurrence of colorectal cancer: meta-analysis stratified on risk factors. Dis Colon Rectum. 1998;41(5):570–85.

    Article  CAS  PubMed  Google Scholar 

  72. Kurz A, Sessler DI, Lenhardt R. Perioperative normothermia to reduce the incidence of surgical-wound infection and shorten hospitalization. Study of Wound Infection and Temperature Group. N Engl J Med. 1996;334(19):1209–15.

    Article  CAS  PubMed  Google Scholar 

  73. Rajagopalan S, et al. The effects of mild perioperative hypothermia on blood loss and transfusion requirement. Anesthesiology. 2008;108(1):71–7.

    Article  PubMed  Google Scholar 

  74. Ben-Eliyahu S, et al. Hypothermia in barbiturate-anesthetized rats suppresses natural killer cell activity and compromises resistance to tumor metastasis: a role for adrenergic mechanisms. Anesthesiology. 1999;91(3):732–40.

    Article  CAS  PubMed  Google Scholar 

  75. Vallianou NG, et al. Statins and cancer. Anticancer Agents Med Chem. 2014;14(5):706–12.

    Article  CAS  PubMed  Google Scholar 

  76. Bauchat JR, Habib AS. Evidence-based anesthesia for major gynecologic surgery. Anesthesiol Clin. 2015;33(1):173–207.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the following for funding support: United States National Institutes of Health (CA109298, P50CA083639, P50CA098258, UH2 TR000943, CA177909), CPRIT RP140106, RP110595, the Department of Defense (OC073399, OC120547); the Blanton-Davis Ovarian Cancer Research Program; a Program Project Development Grant from the Ovarian Cancer Research Fund, Inc. and the Betty Anne Asche Murray Distinguished Professorship. Dr. Bernhard Riedel wishes to thank Drs. Donal Buggy, Vijaya Gottumukkala, and Erica Sloan for their kind assistance in the development of this issue and the reviewing of the articles.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil K. Sood.

Additional information

This article is part of the Topical Collection on Cancer Anesthesia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, L., Nick, A.M. & Sood, A.K. Fundamental Principles of Cancer Biology: Does It Have Relevance to the Perioperative Period?. Curr Anesthesiol Rep 5, 250–256 (2015). https://doi.org/10.1007/s40140-015-0122-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40140-015-0122-9

Keywords

Navigation