Skip to main content

Advertisement

Log in

Robotic Rectal Cancer Surgery: Current Practice, Recent Developments, and Future Directions

  • Robotic Surgery (E Berber, Section Editor)
  • Published:
Current Surgery Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The robotic surgical platform is increasingly used for rectal cancer surgeries. However, whether the long-term clinical and oncological outcomes are significantly better, considering the high costs of this approach, is still debated.

Recent Findings

ROLARR trial did not demonstrate lower conversion rates with robotic compared to laparoscopic rectal cancer surgery, except in a subgroup. Recent large-scale observational studies state otherwise, reporting outcomes favoring the robotic approach. Additionally, functional and long-term oncological outcomes are yet to be thoroughly evaluated. The costliness of robotic surgery is a major concern, however, newer technology and growing experience might improve the cost value in the long-term.

Summary

Large-scale, multicenter randomized trials, and comprehensive analyses are needed to form conclusions with the best evidence on clinical, oncological, functional, and economic outcomes of robotic rectal cancer resections. The technical advantages of the platform are well-recognized, therefore, similar to the progressive adaptation of laparoscopy, robotic surgery is expected to become routine. By identifying the right patient populations, implementing cost-conscious strategies, utilizing newer devices and growing the expertise, robotic platform will likely prove its value for rectal cancer surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Recently published papers of particular interest have been highlighted as: •• Of major importance

  1. Alkatout I, Mechler U, Mettler L, Pape J, Maass N, Biebl M, Gitas G, Laganà AS, Freytag D. The development of laparoscopy-a historical overview. Front Surg. 2021;15(8):799442. https://doi.org/10.3389/fsurg.2021.799442.PMID:34977146;PMCID:PMC8714650.

    Article  Google Scholar 

  2. Kiran RP, El-Gazzaz GH, Vogel JD, Remzi FH. Laparoscopic approach significantly reduces surgical site infections after colorectal surgery: data from national surgical quality improvement program. J Am Coll Surg. 2010;211(2):232–8. https://doi.org/10.1016/j.jamcollsurg.2010.03.028 (Epub 2010 Jun 12 PMID: 20670861).

    Article  PubMed  Google Scholar 

  3. Wilson MZ, Hollenbeak CS, Stewart DB. Laparoscopic colectomy is associated with a lower incidence of postoperative complications than open colectomy: a propensity score-matched cohort analysis. Colorectal Dis. 2014;16(5):382–9. https://doi.org/10.1111/codi.12537 (PMID: 24373345).

    Article  CAS  PubMed  Google Scholar 

  4. Onder A, Benlice C, Church J, Kessler H, Gorgun E. Short-term outcomes of laparoscopic versus open total colectomy with ileorectal anastomosis: a case-matched analysis from a nationwide database. Tech Coloproctol. 2016;20(11):767–73. https://doi.org/10.1007/s10151-016-1539-y (Epub 2016 Oct 25 PMID: 27783175).

    Article  CAS  PubMed  Google Scholar 

  5. Brody H. Colorectal cancer. Nature. 2015;521(7551):S1. https://doi.org/10.1038/521S1a (PMID: 25970450).

    Article  CAS  PubMed  Google Scholar 

  6. Arnold M, Sierra MS, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global patterns and trends in colorectal cancer incidence and mortality. Gut. 2017;66(4):683–91. https://doi.org/10.1136/gutjnl-2015-310912 (Epub 2016 Jan 27 PMID: 26818619).

    Article  PubMed  Google Scholar 

  7. Davis CH, Gaglani T, Moore LW, Du XL, Hwang H, Yamal JM, Bailey HR, Cusick MV. Trends and outcomes in laparoscopic versus open surgery for rectal cancer from 2005 to 2016 using the ACS-NSQIP database, a retrospective cohort study. Int J Surg. 2019;63:71–6. https://doi.org/10.1016/j.ijsu.2019.02.006 (Epub 2019 Feb 13 PMID: 30771485).

    Article  PubMed  Google Scholar 

  8. Guillou PJ, Quirke P, Thorpe H, Walker J, Jayne DG, Smith AM, Heath RM, Brown JM; MRC CLASICC Trial Group. Short-term endpoints of conventional versus laparoscopic-assisted surgery in patients with colorectal cancer (MRC CLASICC trial): multicentre, randomised controlled trial. Lancet. 2005 May 14–20;365(9472):1718–26. doi: https://doi.org/10.1016/S0140-6736(05)66545-2. PMID: 15894098.

  9. Fleshman J, Branda M, Sargent DJ, Boller AM, George V, Abbas M, Peters WR Jr, Maun D, Chang G, Herline A, Fichera A, Mutch M, Wexner S, Whiteford M, Marks J, Birnbaum E, Margolin D, Larson D, Marcello P, Posner M, Read T, Monson J, Wren SM, Pisters PW, Nelson H. Effect of laparoscopic-assisted resection vs open resection of stage II or III rectal cancer on pathologic outcomes: the ACOSOG Z6051 randomized clinical trial. JAMA. 2015;314(13):1346–55. https://doi.org/10.1001/jama.2015.10529.PMID:26441179;PMCID:PMC5140087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Herron DM, Marohn M; SAGES-MIRA Robotic Surgery Consensus Group. A consensus document on robotic surgery. Surg Endosc. 2008 Feb;22(2):313–25; discussion 311–2. doi: https://doi.org/10.1007/s00464-007-9727-5. Epub 2007 Dec 28. PMID: 18163170.

  11. •• Jayne D, Pigazzi A, Marshall H, Croft J, Corrigan N, Copeland J, Quirke P, West N, Rautio T, Thomassen N, Tilney H, Gudgeon M, Bianchi PP, Edlin R, Hulme C, Brown J. Effect of robotic-assisted vs conventional laparoscopic surgery on risk of conversion to open laparotomy among patients undergoing resection for rectal cancer: the rolarr randomized clinical trial. JAMA. 2017 Oct 24;318(16):1569–80. doi: https://doi.org/10.1001/jama.2017.7219. PMID: 29067426; PMCID: PMC5818805. A landmark prospective randomized controlled trial comparing robotic and laparoscopic proctectomy in terms of conversion to open rates. It builds on the results of MRC CLASICC and ACOSOG Z6051 trials, which showed potentially concerning results for conversion rates and outcomes of laparoscopic rectal cancer surgery. Utilization of minimally invasive approaches for rectal cancer surgery has been questioned since the results of MRC CLASICC and ACOSOG Z6051 came out. Several factors that were proposed to lead to this unfavorable result for laparoscopic surgery, were hypothesized to be addressed by the robotic approach. However, the ROLARR trial did not find superiority with the robot.

  12. •• Kim MJ, Park SC, Park JW, Chang HJ, Kim DY, Nam BH, Sohn DK, Oh JH. Robot-assisted versus laparoscopic surgery for rectal cancer: a phase ıı open label prospective randomized controlled trial. Ann Surg. 2018 Feb;267(2):243–51. doi: https://doi.org/10.1097/SLA.0000000000002321. PMID: 28549014. One of the other few prospective randomized controlled trials comparing laparoscopic and robotic proctectomies, in terms of conversion rates. Similar to ROLARR, this trial did not show superiority with the robotic approach.

  13. •• Myrseth E, Nymo LS, Gjessing PF, Kørner H, Kvaløy JT, Norderval S. Lower conversion rate with robotic assisted rectal resections compared with conventional laparoscopy; a national cohort study. Surg Endosc. 2022 May;36(5):3574–84. doi: https://doi.org/10.1007/s00464-021-08681-x. Epub 2021 Aug 18. PMID: 34406469. Although the above-mentioned RCTs did not find the robotic approach to be superior, many clinicians believe the robot provides a substantial advantage. The prominent features are the possibility of a more precise dissection with a stable camera view, and better instrument maneuverability. With the combination of the latest technology, allowing single-docking proctectomy, and growing experience among surgeons, it is hypothesized that the more recent data will show a significant difference between laparoscopic, and robotic approaches, proving the superiority of the latter. As we do not have recent RCTs on the matter, the published retrospective data from large cohorts with good methodology was given importance in this review. This particular study demonstrates better results with the robotic approach.

  14. •• Crippa J, Grass F, Dozois EJ, Mathis KL, Merchea A, Colibaseanu DT, Kelley SR, Larson DW. Robotic surgery for rectal cancer provides advantageous outcomes over laparoscopic approach: results from a large retrospective cohort. Ann Surg. 2021 Dec 1;274(6):e1218–22. doi: https://doi.org/10.1097/SLA.0000000000003805. PMID: 32068552. Similarly to the previous one, this is another recent retrospective study with a large cohort showing better outcomes with robotic proctectomy.

  15. Gorgun E, Rencuzogullari A, Ozben V, Stocchi L, Fraser T, Benlice C, Hull T. An effective bundled approach reduces surgical site infections in a high-outlier colorectal unit. Dis Colon Rectum. 2018;61(1):89–98. https://doi.org/10.1097/DCR.0000000000000929 (PMID: 29215475).

    Article  PubMed  Google Scholar 

  16. Lee JL, Alsaleem HA, Kim JC. Robotic surgery for colorectal disease: review of current port placement and future perspectives. Ann Surg Treat Res. 2020;98(1):31–43. https://doi.org/10.4174/astr.2020.98.1.31.

    Article  PubMed  Google Scholar 

  17. Rencuzogullari A, Gorgun E. Robotic rectal surgery. J Surg Oncol. 2015;112(3):326–31. https://doi.org/10.1002/jso.23956 (PMID: 26390286).

    Article  PubMed  Google Scholar 

  18. Parfitt JR, Driman DK. The total mesorectal excision specimen for rectal cancer: a review of its pathological assessment. J Clin Pathol. 2007;60(8):849–55. https://doi.org/10.1136/jcp.2006.043802.

    Article  PubMed  Google Scholar 

  19. You YN, Hardiman KM, Bafford A, Poylin V, Francone TD, Davis K, Paquette IM, Steele SR, Feingold DL; On Behalf of the Clinical Practice Guidelines Committee of the American Society of Colon and Rectal Surgeons. The American Society of colon and rectal surgeons clinical practice guidelines for the management of rectal cancer. Dis Colon Rectum. 2020 Sep;63(9):1191–222. doi: https://doi.org/10.1097/DCR.0000000000001762. PMID: 33216491.

  20. Stevenson AR, Solomon MJ, Lumley JW, Hewett P, Clouston AD, Gebski VJ, Davies L, Wilson K, Hague W, Simes J, ALaCaRT Investidators. Effect of laparoscopic-assisted resection vs open resection on pathological outcomes in rectal cancer: the ALaCaRT randomized clinical trial. JAMA. 2015;314(13):1356–63. https://doi.org/10.1001/jama.2015.12009.

    Article  CAS  PubMed  Google Scholar 

  21. Green BL, Marshall HC, Collinson F, Quirke P, Guillou P, Jayne DG, Brown JM. Long-term follow-up of the Medical Research Council CLASICC trial of conventional versus laparoscopically assisted resection in colorectal cancer. Br J Surg. 2013;100(1):75–82. https://doi.org/10.1002/bjs.8945 (Epub 2012 Nov 6 PMID: 23132548).

    Article  CAS  PubMed  Google Scholar 

  22. van der Pas MH, Haglind E, Cuesta MA, Fürst A, Lacy AM, Hop WC, Bonjer HJ; COlorectal cancer Laparoscopic or Open Resection II (COLOR II) Study Group. Laparoscopic versus open surgery for rectal cancer (COLOR II): short-term outcomes of a randomised, phase 3 trial. Lancet Oncol. 2013 Mar;14(3):210–8. doi: https://doi.org/10.1016/S1470-2045(13)70016-0. Epub 2013 Feb 6. PMID: 23395398.

  23. Kang SB, Park JW, Jeong SY, Nam BH, Choi HS, Kim DW, Lim SB, Lee TG, Kim DY, Kim JS, Chang HJ, Lee HS, Kim SY, Jung KH, Hong YS, Kim JH, Sohn DK, Kim DH, Oh JH. Open versus laparoscopic surgery for mid or low rectal cancer after neoadjuvant chemoradiotherapy (COREAN trial): short-term outcomes of an open-label randomised controlled trial. Lancet Oncol. 2010;11(7):637–45. https://doi.org/10.1016/S1470-2045(10)70131-5 (Epub 2010 Jun 16 PMID: 20610322).

    Article  PubMed  Google Scholar 

  24. Jeong SY, Park JW, Nam BH, Kim S, Kang SB, Lim SB, Choi HS, Kim DW, Chang HJ, Kim DY, Jung KH, Kim TY, Kang GH, Chie EK, Kim SY, Sohn DK, Kim DH, Kim JS, Lee HS, Kim JH, Oh JH. Open versus laparoscopic surgery for mid-rectal or low-rectal cancer after neoadjuvant chemoradiotherapy (COREAN trial): survival outcomes of an open-label, non-inferiority, randomised controlled trial. Lancet Oncol. 2014;15(7):767–74. https://doi.org/10.1016/S1470-2045(14)70205-0.

    Article  PubMed  Google Scholar 

  25. Schietroma M, Romano L, Apostol AI, Vada S, Necozione S, Carlei F, Giuliani A. Mid- and low-rectal cancer: laparoscopic vs open treatment-short- and long-term results: meta-analysis of randomized controlled trials. Int J Colorectal Dis. 2022;37(1):71–99. https://doi.org/10.1007/s00384-021-04048-9.

    Article  PubMed  Google Scholar 

  26. Baik SH, Ko YT, Kang CM, Lee WJ, Kim NK, Sohn SK, Chi HS, Cho CH. Robotic tumor-specific mesorectal excision of rectal cancer: short-term outcome of a pilot randomized trial. Surg Endosc. 2008;22(7):1601–8. https://doi.org/10.1007/s00464-008-9752-z (Epub 2008 Feb 13 PMID: 18270772).

    Article  CAS  PubMed  Google Scholar 

  27. •• Corrigan N, Marshall H, Croft J, Copeland J, Jayne D, Brown J. Exploring and adjusting for potential learning effects in ROLARR: a randomised controlled trial comparing robotic-assisted vs. standard laparoscopic surgery for rectal cancer resection. Trials. 2018 Jun 27;19(1):339. doi: https://doi.org/10.1186/s13063-018-2726-0. PMID: 29945673; PMCID: PMC6020359. This study was published with the data from the landmark ROLARR study, and explored a potential confounder for their results. Particularly, on a subgroup analysis, this paper showed better results for the robotic surgery when done by a surgeon more experienced in this approach. This finding highlights the learning curve that comes with any new technique, and the effect on the study results, providing insights on how the methodology should account for this in later trials. Additionally, it warrants further investigations into the hypothesis on the superiority of the robotic approach.

  28. Tolstrup R, Funder JA, Lundbech L, Thomassen N, Iversen LH. Perioperative pain after robot-assisted versus laparoscopic rectal resection. Int J Colorectal Dis. 2018;33(3):285–9. https://doi.org/10.1007/s00384-017-2943-0.

    Article  PubMed  Google Scholar 

  29. Ackerman SJ, Daniel S, Baik R, Liu E, Mehendale S, Tackett S, Hellan M. Comparison of complication and conversion rates between robotic-assisted and laparoscopic rectal resection for rectal cancer: which patients and providers could benefit most from robotic-assisted surgery? J Med Econ. 2018;21(3):254–61. https://doi.org/10.1080/13696998.2017.1396994 (Epub 2017 Nov 14 PMID: 29065737).

    Article  PubMed  Google Scholar 

  30. Jimenez-Rodriguez RM, Flynn J, Patil S, Widmar M, Quezada-Diaz F, Lynn P, Strombom P, Temple L, Smith JJ, Wei IH, Pappou EP, Guillem JG, Paty PP, Nash GM, Weiser MR, Garcia-Aguilar J. Comparing outcomes of robotic versus open mesorectal excision for rectal cancer. BJS Open. 2021;5(6):zrab135. https://doi.org/10.1093/bjsopen/zrab135.

    Article  PubMed  Google Scholar 

  31. •• Cengiz TB, Benlice C, Ozgur I, Kaya G, Aytac E, Kalady MF, Steele SR, Liska D, Gorgun E. Cost-conscious robotic restorative proctectomy has similar economic and oncologic outcomes to open restorative proctectomy: results of a long-term follow-up study. Int J Med Robot. 2021 Dec;17(6):e2331. Doi: https://doi.org/10.1002/rcs.2331. Epub 2021 Sep 27. PMID: 34514721. One of the major concerns voiced regarding robotic surgery is the high cost. So far, several factors were cited for this, the main ones being the costs of the robot and its single-use instruments, and longer OR times. Considering the big picture implications for patients and healthcare systems, the “superiority” of any approach should include the financial analysis as well. This unique study from our institution explores the financial impact of utilizing cost-conscious strategies during a robotic procedure. With this approach, an important driver of the cost—utilization of single-use instruments—is addressed. Our results show that this could be a viable strategy, to effectively decrease cost.

  32. Guo Y, Guo Y, Luo Y, Song X, Zhao H, Li L. Comparison of pathologic outcomes of robotic and open resections for rectal cancer: a systematic review and meta-analysis. PLoS ONE. 2021;16(1):e0245154. https://doi.org/10.1371/journal.pone.0245154.PMID:33439912;PMCID:PMC7806147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nguyen TH, Chokshi RV. Low anterior resection syndrome. Curr Gastroenterol Rep. 2020;22(10):48. https://doi.org/10.1007/s11894-020-00785-z.PMID:32749603;PMCID:PMC8370104.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Bleier JI, Maykel JA. Outcomes following proctectomy. Surg Clin North Am. 2013;93(1):89–106. https://doi.org/10.1016/j.suc.2012.09.012 (Epub 2012 Oct 30 PMID: 23177067).

    Article  PubMed  Google Scholar 

  35. •• Bolton WS, Chapman SJ, Corrigan N, Croft J, Collinson F, Brown JM, Jayne DG. The incidence of low anterior resection syndrome as assessed in an ınternational randomized controlled trial (MRC/NIHR ROLARR). Ann Surg. 2021 Dec 1;274(6):e1223–9. doi: https://doi.org/10.1097/SLA.0000000000003806. PMID: 32097165. One of the most important long-term outcomes after this surgery is the low anterior resection syndrome (LARS), occurring in up to 80% of patients. Robotic surgery is proposed to facilitate more precise dissections, potentially decreasing damage to finer structures such as the neural plexuses and decreasing the occurrence of LARS. This paper reports the long-term outcomes of ROLARR trial patients, providing important insight into the issue. The results show no difference between the laparoscopic and robotic groups.

  36. Wang G, Wang Z, Jiang Z, Liu J, Zhao J, Li J. Male urinary and sexual function after robotic pelvic autonomic nerve-preserving surgery for rectal cancer. Int J Med Robot. 2017;13(1):e1725. https://doi.org/10.1002/rcs.1725.

    Article  Google Scholar 

  37. Rouanet P, Bertrand MM, Jarlier M, Mourregot A, Traore D, Taoum C, de Forges H, Colombo PE. Robotic versus laparoscopic total mesorectal excision for sphincter-saving surgery: results of a single-center series of 400 consecutive patients and perspectives. Ann Surg Oncol. 2018;25(12):3572–9. https://doi.org/10.1245/s10434-018-6738-5 (Epub 2018 Aug 31 PMID: 30171509).

    Article  PubMed  Google Scholar 

  38. •• Kim HJ, Choi GS, Park JS, Park SY, Yang CS, Lee HJ. The impact of robotic surgery on quality of life, urinary and sexual function following total mesorectal excision for rectal cancer: a propensity score-matched analysis with laparoscopic surgery. Colorectal Dis. 2018 May;20(5):O103-13. doi: https://doi.org/10.1111/codi.14051. PMID: 29460997. This paper reports the long-term results of the other recent RCT mentioned previously, comparing functional and quality of life outcomes between laparoscopic and robotic arms. Results show an advantage for the robotic apparoch in some quality of life outcomes, and male sexual funciton.

  39. Zhang T, Song Z, Zhang Y, Ye F, Cheng X, Wang S, Jing X, Ji X, Zhao R. Single-docking robotic assisted proctectomy for rectal cancer below peritoneal reflection: a propensity score matching analysis. Ann Transl Med. 2021;9(12):1013. https://doi.org/10.21037/atm-21-2744.PMID:34277813;PMCID:PMC8267272.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Glencer AC, Lin JA, Trang K, Greenberg A, Kirkwood KS, Adam MA, Sarin A. Assessing the role of robotic proctectomy in obese patients: a contemporary NSQIP analysis. J Robot Surg. 2022. https://doi.org/10.1007/s11701-022-01380-2.

    Article  PubMed  Google Scholar 

  41. Gorgun E, Ozben V, Costedio M, Stocchi L, Kalady M, Remzi F. Robotic versus conventional laparoscopic rectal cancer surgery in obese patients. Colorectal Dis. 2016;18(11):1063–71. https://doi.org/10.1111/codi.13374 (PMID: 27154266).

    Article  CAS  PubMed  Google Scholar 

  42. Jamali FR, Soweid AM, Dimassi H, Bailey C, Leroy J, Marescaux J. Evaluating the degree of difficulty of laparoscopic colorectal surgery. Arch Surg. 2008;143(8):762–7. https://doi.org/10.1001/archsurg.143.8.762.

    Article  PubMed  Google Scholar 

  43. Kayano H, Okuda J, Tanaka K, Kondo K, Tanigawa N. Evaluation of the learning curve in laparoscopic low anterior resection for rectal cancer. Surg Endosc. 2011;25(9):2972–9. https://doi.org/10.1007/s00464-011-1655-8 (Epub 2011 Apr 22 PMID: 21512883).

    Article  PubMed  Google Scholar 

  44. Son GM, Kim JG, Lee JC, Suh YJ, Cho HM, Lee YS, Lee IK, Chun CS. Multidimensional analysis of the learning curve for laparoscopic rectal cancer surgery. J Laparoendosc Adv Surg Tech A. 2010;20(7):609–17. https://doi.org/10.1089/lap.2010.0007 (PMID: 20701545).

    Article  PubMed  Google Scholar 

  45. Noh GT, Han M, Hur H, Baik SH, Lee KY, Kim NK, Min BS. Impact of laparoscopic surgical experience on the learning curve of robotic rectal cancer surgery. Surg Endosc. 2021;35(10):5583–92. https://doi.org/10.1007/s00464-020-08059-5 (Epub 2020 Oct 8 PMID: 33030590).

    Article  PubMed  Google Scholar 

  46. Pascual M, Salvans S, Pera M. Laparoscopic colorectal surgery: Current status and implementation of the latest technological innovations. World J Gastroenterol. 2016;22(2):704–17. https://doi.org/10.3748/wjg.v22.i2.704.PMID:26811618;PMCID:PMC4716070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Odermatt M, Ahmed J, Panteleimonitis S, Khan J, Parvaiz A. Prior experience in laparoscopic rectal surgery can minimise the learning curve for robotic rectal resections: a cumulative sum analysis. Surg Endosc. 2017;31(10):4067–76. https://doi.org/10.1007/s00464-017-5453-9 (Epub 2017 Mar 7 PMID: 28271267).

    Article  PubMed  Google Scholar 

  48. Jiménez-Rodríguez RM, Díaz-Pavón JM, de la de JuanPortilla F, Prendes-Sillero E, Dussort HC, Padillo J. Learning curve for robotic-assisted laparoscopic rectal cancer surgery. Int J Colorectal Dis. 2013;28(6):815–21. https://doi.org/10.1007/s00384-012-1620-6.

    Article  PubMed  Google Scholar 

  49. Foo CC, Law WL. The learning curve of robotic-assisted low rectal resection of a novice rectal surgeon. World J Surg. 2016;40:456–62.

    Article  Google Scholar 

  50. Silva-Velazco J, Dietz DW, Stocchi L, Costedio M, Gorgun E, Kalady MF, Kessler H, Lavery IC, Remzi FH. Considering value in rectal cancer surgery: an analysis of costs and outcomes based on the open, laparoscopic, and robotic approach for proctectomy. Ann Surg. 2017;265(5):960–8. https://doi.org/10.1097/SLA.0000000000001815 (PMID: 27232247).

    Article  PubMed  Google Scholar 

  51. •• Justiniano CF, Becerra AZ, Xu Z, Aquina CT, Boodry CI, Schymura MJ, Boscoe FP, Noyes K, Temple LK, Fleming FJ. A population-based study of 90-day hospital cost and utilization associated with robotic surgery in colon and rectal cancer. J Surg Res. 2020 Jan;245:136–44. doi: https://doi.org/10.1016/j.jss.2019.07.052. Epub 2019 Aug 13. PMID: 31419638. This is another study on financial outcomes of open, laparoscopic, and robotic approaches in colorectal cancer surgery, evaluating not only the direct surgery/hospitalization costs, but also the associated costs of complications, subsequent readmissions, etc. They find no difference in terms of overall cost when the minimally invasive surgery is not converted to open. Additionally, clinical outcomes were significantly better for the non-converted minimally invasive approaches. The paper provides important insight taking into account the outcome-based costs as well.

  52. •• Gorgun IE, Cengiz TB, Ozgur I, Dionigi B, Kalady MF, Steele SR. Outcomes and cost analysis of robotic versus laparoscopic abdominoperineal resection for rectal cancer: a case-matched study. Dis Colon Rectum. 2022 Feb 21. doi: https://doi.org/10.1097/DCR.0000000000002394. Epub ahead of print. PMID: 35195554. Another recent paper from our institution explores the effect of operative time on costs, by comparing a procedure that requires robot docking only at the beginning of the procedure, therefore having similar operative times with the laparoscopy. If the hypothesized benefits of the robotic approach exist, the cost metrics on a wide scale will be even more crucial. We as clinicians want to provide the best care, while being cognizant of the economic impact. In this paper, our team demonstrated that the decrease in operative time with the single-docking approach can be an effective strategy to decrease costs. This is especially important, because the newer Da Vinci Xi robot allows low anterior resections to be performed with a single-docking technique as well. Therefore, decreasing operative times and costs of robotic total mesorectal excisions.

  53. Morelli L, Di Franco G, Lorenzoni V, Guadagni S, Palmeri M, Furbetta N, Gianardi D, Bianchini M, Caprili G, Mosca F, Turchetti G, Cuschieri A. Structured cost analysis of robotic TME resection for rectal cancer: a comparison between the da Vinci Si and Xi in a single surgeon’s experience. Surg Endosc. 2019;33(6):1858–69. https://doi.org/10.1007/s00464-018-6465-9 (Epub 2018 Sep 24 PMID: 30251144).

    Article  PubMed  Google Scholar 

  54. Wang Y, Li Z, Yi B, Zhu S. Initial experience of Chinese surgical robot “Micro Hand S”-assisted versus open and laparoscopic total mesorectal excision for rectal cancer: short-term outcomes in a single center. Asian J Surg. 2022;45(1):299–306. https://doi.org/10.1016/j.asjsur.2021.05.038 (Epub 2021 Jun 17 PMID: 34147330).

    Article  PubMed  Google Scholar 

  55. Samalavicius NE, Dulskas A, Janusonis V, Klimasauskiene V, Eismontas V, Deduchovas O, Janusonis T, Markelis R, Smolskas E. Robotic colorectal surgery using the Senhance® robotic system: a single center experience. Tech Coloproctol. 2022. https://doi.org/10.1007/s10151-022-02589-x.

    Article  PubMed  Google Scholar 

  56. Tejedor P, Sagias F, Khan JS. The use of enhanced technologies in robotic surgery and its impact on outcomes in rectal cancer: a systematic review. Surg Innov. 2020;27(4):384–91. https://doi.org/10.1177/1553350620928277 (Epub 2020 Jun 2 PMID: 32484427).

    Article  PubMed  Google Scholar 

  57. Hasegawa H, Tsukada Y, Wakabayashi M, Nomura S, Sasaki T, Nishizawa Y, Ikeda K, Akimoto T, Ito M. Impact of intraoperative indocyanine green fluorescence angiography on anastomotic leakage after laparoscopic sphincter-sparing surgery for malignant rectal tumors. Int J Colorectal Dis. 2020;35(3):471–80. https://doi.org/10.1007/s00384-019-03490-0 (Epub 2020 Jan 6 PMID: 31907595).

    Article  PubMed  Google Scholar 

  58. Safiejko K, Tarkowski R, Kozlowski TP, Koselak M, Jachimiuk M, Tarasik A, Pruc M, Smereka J, Szarpak L. Safety and efficacy of indocyanine green in colorectal cancer surgery: a systematic review and meta-analysis of 11,047 patients. Cancers (Basel). 2022;14(4):1036. https://doi.org/10.3390/cancers14041036.PMID:35205784;PMCID:PMC8869881.

    Article  CAS  Google Scholar 

  59. Armstrong G, Croft J, Corrigan N, Brown JM, Goh V, Quirke P, Hulme C, Tolan D, Kirby A, Cahill R, O’Connell PR, Miskovic D, Coleman M, Jayne D. IntAct: intra-operative fluorescence angiography to prevent anastomotic leak in rectal cancer surgery: a randomized controlled trial. Colorectal Dis. 2018;20(8):O226-34. https://doi.org/10.1111/codi.14257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Slooter MD, Talboom K, Sharabiany S, van Helsdingen CPM, van Dieren S, Ponsioen CY, Nio CY, Consten ECJ, Wijsman JH, Boermeester MA, Derikx JPM, Musters GD, Bemelman WA, Tanis PJ, Hompes R; IMARI-study group. IMARI: multi-interventional program for prevention and early management of anastomotic leakage after low anterior resection in Rectal cancer patients: rationale and study protocol. BMC Surg. 2020;20(1):240. https://doi.org/10.1186/s12893-020-00890-w. PMID: 33059647; PMCID: PMC7565357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Palmeri M, Gianardi D, Guadagni S, et al. Robotic colorectal resection with and without the use of the new Da Vinci table motion: a case-matched study. Surg Innov. 2018;25(3):251–7. https://doi.org/10.1177/1553350618765540.

    Article  PubMed  Google Scholar 

  62. Giannone F, Felli E, Cherkaoui Z, Mascagni P, Pessaux P. Augmented reality and image-guided robotic liver surgery. Cancers (Basel). 2021;13(24):6268. https://doi.org/10.3390/cancers13246268.PMID:34944887;PMCID:PMC8699460.

    Article  Google Scholar 

  63. Lee D, Yu HW, Kim S, Yoon J, Lee K, Chai YJ, Choi JY, Kong HJ, Lee KE, Cho HS, Kim HC. Vision-based tracking system for augmented reality to localize recurrent laryngeal nerve during robotic thyroid surgery. Sci Rep. 2020;10(1):8437. https://doi.org/10.1038/s41598-020-65439-6.PMID:32439970;PMCID:PMC7242458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Schiavina R, Bianchi L, Lodi S, Cercenelli L, Chessa F, Bortolani B, Gaudiano C, Casablanca C, Droghetti M, Porreca A, Romagnoli D, Golfieri R, Giunchi F, Fiorentino M, Marcelli E, Diciotti S, Brunocilla E. Real-time augmented reality three-dimensional guided robotic radical prostatectomy: preliminary experience and evaluation of the impact on surgical planning. Eur Urol Focus. 2021;7(6):1260–7. https://doi.org/10.1016/j.euf.2020.08.004 (Epub 2020 Sep 1 PMID: 32883625).

    Article  PubMed  Google Scholar 

  65. Wendler T, van Leeuwen FWB, Navab N, van Oosterom MN. How molecular imaging will enable robotic precision surgery: the role of artificial intelligence, augmented reality, and navigation. Eur J Nucl Med Mol Imaging. 2021;48(13):4201–24. https://doi.org/10.1007/s00259-021-05445-6.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Hachach-Haram N, Miskovic D. Augmented reality: moving robotics forward. Clin Colon Rectal Surg. 2021;34(5):345–52. https://doi.org/10.1055/s-0041-1726353.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Collins JW, Ghazi A, Stoyanov D, Hung A, Coleman M, Cecil T, Ericsson A, Anvari M, Wang Y, Beaulieu Y, Haram N, Sridhar A, Marescaux J, Diana M, Marcus HJ, Levy J, Dasgupta P, Stefanidis D, Martino M, Feins R, Patel V, Slack M, Satava RM, Kelly JD. Utilising an accelerated delphi process to develop guidance and protocols for telepresence applications in remote robotic surgery training. Eur Urol Open Sci. 2020;6(22):23–33. https://doi.org/10.1016/j.euros.2020.09.005.PMID:34337475;PMCID:PMC8317899.

    Article  Google Scholar 

  68. Eleid MF, Zheng PP, Gulati R, Bergman P, Kottenstette N, Li Y, Lerman A, Sandhu GS. Remote robotic percutaneous coronary intervention: an animal feasibility study. Catheter Cardiovasc Interv. 2021;97(3):E274–9. https://doi.org/10.1002/ccd.28978 (Epub 2020 May 22 PMID: 32442332).

    Article  PubMed  Google Scholar 

Download references

Funding

This is not a sponsor-funded study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emre Gorgun.

Ethics declarations

Conflict of İnterest

Dr. Emre Gorgun is a consultant for Boston Scientific Corporation, Intuitive Surgical, Inc and Olympus America Inc. Other authors do not have any conflicts of interest of financial ties to disclose.

Human and Animal Rights

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Robotic Surgery.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tursun, N., Gorgun, E. Robotic Rectal Cancer Surgery: Current Practice, Recent Developments, and Future Directions. Curr Surg Rep 10, 148–159 (2022). https://doi.org/10.1007/s40137-022-00322-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40137-022-00322-z

Keywords

Navigation