Skip to main content

Advertisement

Log in

Immunosuppressive Therapy for High-Risk Corneal Transplant

  • Cornea (K Houser, Section Editor)
  • Published:
Current Ophthalmology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review summarizes the efficacy, clinical utility, and adverse event profile of available immunosuppression agents used for high-risk keratoplasties. New studies are emphasized.

Recent Findings

Recent studies have highlighted the use of different immunosuppressive agents in the setting of high-risk keratoplasty as well as supporting studies (e.g., immune privilege, panel reactive antibody, HLA matching, graft rejection, and large reviews on the topic). Specific agents studied were topical difluprednate, topical and systemic tacrolimus, topical and systemic cyclosporine, mycophenolate mofetil, methotrexate, and immunomodulatory anti-VEGF agents.

Summary

Due to loss of protective factors, high-risk keratoplasties benefit from immunosuppression to prolong graft survival. Aggressive topical immunosuppression with periocular/systemic corticosteroids and immunomodulatory agents are useful for initial high-risk keratoplasties. Any history of rejection will likely benefit more from adequate systemic immunosuppression. Additional long-term studies in this population are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Gain P, Jullienne R, He Z, et al. Global survey of corneal transplantation and eye banking. JAMA Ophthalmol. 2016;134(2):167–73. https://doi.org/10.1001/jamaophthalmol.2015.4776.

    Article  Google Scholar 

  2. • Liu S, Wong YL, Walkden A. Current perspectives on corneal transplantation. Clin Ophthalmol. 2022;16:631–46. https://doi.org/10.2147/OPTH.S289359. This comprehensive review provided insight on the various keratoplasty techniques and their transplant success rates.

    Article  Google Scholar 

  3. •• Jabbehdari S, Farooq A, Djalilian AR. Immunologically high-risk penetrating keratoplasty and large-diameter corneal grafts. In: Mannis MJ, Holland EJ, ed. Cornea. 5th ed. New York: Elsevier 2021:1305 – 1322. This chapter reviews high-risk keratoplasty features and details management.

  4. • Notara M, Lentzsch A, Coroneo M, Cursiefen C. The role of limbal epithelial stem cells in regulating corneal (lymph)angiogenic privilege and the micromilieu of the limbal niche following UV exposure. Stem Cells Int. 2018;2018:8620172. https://doi.org/10.1155/2018/8620172. This review focused on the various cell types role in maintaining the immunological privilege of the cornea, more specially the lymphangiogenic privilege.

    Article  CAS  Google Scholar 

  5. • Hori J, Yamaguchi T, Keino H, Hamrah P, Maruyama K. Immune privilege in corneal transplantation. Prog Retin Eye Res. 2019;72:100758. https://doi.org/10.1016/j.preteyeres.2019.04.002. This review shines light on 4 targeted mechanisms to maintain a microenvironment of immunological privilege in the cornea.

    Article  CAS  Google Scholar 

  6. Nakamura T, Ishikawa F, Sonoda KH, et al. Characterization and distribution of bone marrow-derived cells in mouse cornea. Invest Ophthalmol Vis Sci. 2005;46(2):497–503. https://doi.org/10.1167/iovs.04-1154.

    Article  Google Scholar 

  7. Kuffova L, Holan V, Lumsden L, Forrester JV, Filipec M. Cell subpopulations in failed human corneal grafts. Br J Ophthalmol. 1999;83(12):1364–9. https://doi.org/10.1136/bjo.83.12.1364.

    Article  CAS  Google Scholar 

  8. Whitsett CF, Stulting RD. The distribution of HLA antigens on human corneal tissue. Invest Ophthalmol Vis Sci. 1984;25(5):519–24 (https://www.ncbi.nlm.nih.gov/pubmed/6370904).

    CAS  Google Scholar 

  9. • Major J, Foroncewicz B, Szaflik JP, Mucha K. Immunology and donor-specific antibodies in corneal transplantation. Arch Immunol Ther Exp (Warsz). 2021;69(1):32. https://doi.org/10.1007/s00005-021-00636-3. This review focuses on the etiologies and prognostic nature of high risk keratoplasties as well as the immunosuppressive therapy directed to immunological monitoring.

    Article  CAS  Google Scholar 

  10. Jordan CS, Price MO, Trespalacios R, Price FW Jr. Graft rejection episodes after Descemet stripping with endothelial keratoplasty: part one: clinical signs and symptoms. Br J Ophthalmol. 2009;93(3):387–90. https://doi.org/10.1136/bjo.2008.140020.

    Article  CAS  Google Scholar 

  11. Qazi Y, Hamrah P. Corneal allograft rejection: immunopathogenesis to therapeutics. J Clin Cell Immunol 2013;2013 (Suppl 9). https://doi.org/10.4172/2155-9899.S9-006.

  12. Dietrich T, Bock F, Yuen D, et al. Cutting edge: lymphatic vessels, not blood vessels, primarily mediate immune rejections after transplantation. J Immunol. 2010;184(2):535–9. https://doi.org/10.4049/jimmunol.0903180.

    Article  CAS  Google Scholar 

  13. •• Armitage WJ, Goodchild C, Griffin MD, et al. High-risk corneal transplantation: recent developments and future possibilities. Transplantation. 2019;103(12):2468–78. https://doi.org/10.1097/TP.0000000000002938. This review provides a critical understanding of the mechanism behind high-risk corneal graft failure, with directed solutions to lengthen graft survival.

    Article  CAS  Google Scholar 

  14. Thompson RW Jr, Price MO, Bowers PJ, Price FW Jr. Long-term graft survival after penetrating keratoplasty. Ophthalmology. 2003;110(7):1396–402. https://doi.org/10.1016/S0161-6420(03)00463-9.

    Article  Google Scholar 

  15. Al-Yousuf N, Mavrikakis I, Mavrikakis E, Daya SM. Penetrating keratoplasty: indications over a 10 year period. Br J Ophthalmol. 2004;88(8):998–1001. https://doi.org/10.1136/bjo.2003.031948.

    Article  CAS  Google Scholar 

  16. Writing Committee for the Cornea Donor Study Research G, Sugar A, Gal RL, et al. Factors associated with corneal graft survival in the cornea donor study. JAMA Ophthalmol. 2015;133(3):246–54. https://doi.org/10.1001/jamaophthalmol.2014.3923.

    Article  Google Scholar 

  17. Maguire MG, Stark WJ, Gottsch JD, et al. Risk factors for corneal graft failure and rejection in the collaborative corneal transplantation studies Collaborative Corneal Transplantation Studies Research Group. Ophthalmology. 1994;101(9):1536–47. https://doi.org/10.1016/s0161-6420(94)31138-9.

    Article  CAS  Google Scholar 

  18. Williams KA, Roder D, Esterman A, Muehlberg SM, Coster DJ. Factors predictive of corneal graft survival Report from the Australian Corneal Graft Registry. Ophthalmology. 1992;99(3):403–14. https://doi.org/10.1016/s0161-6420(92)31960-8.

    Article  CAS  Google Scholar 

  19. Williams KA, Esterman AJ, Bartlett C, Holland H, Hornsby NB, Coster DJ. How effective is penetrating corneal transplantation? Factors influencing long-term outcome in multivariate analysis. Transplantation. 2006;81(6):896–901. https://doi.org/10.1097/01.tp.0000185197.37824.35.

    Article  Google Scholar 

  20. • Jeffrey JH, Denny MR, Cheung AY, et al. Use of panel-reactive antibody testing in the planning and management of ocular surface stem cell transplantation. Cornea. 2021;40(8):963–6. https://doi.org/10.1097/ICO.0000000000002552. This retrospective chart review introduced panel-reactive antibody as a valid measure of postoperative success rate in ocular surface stem cell transplantation.

    Article  Google Scholar 

  21. Volker-Dieben HJ, Claas FH, Schreuder GM, et al. Beneficial effect of HLA-DR matching on the survival of corneal allografts. Transplantation. 2000;70(4):640–8. https://doi.org/10.1097/00007890-200008270-00018.

    Article  CAS  Google Scholar 

  22. Roy R, Boisjoly HM, Wagner E, et al. Pretransplant and posttransplant antibodies in human corneal transplantation. Transplantation. 1992;54(3):463–7. https://doi.org/10.1097/00007890-199209000-00015.

    Article  CAS  Google Scholar 

  23. Hahn AB, Foulks GN, Enger C, et al. The association of lymphocytotoxic antibodies with corneal allograft rejection in high risk patients. The Collaborative Corneal Transplantation Studies Research Group. Transplantation. 1995;59(1):21–7. https://doi.org/10.1097/00007890-199501150-00005.

    Article  CAS  Google Scholar 

  24. Zavazava N, Kronke M. Soluble HLA class I molecules induce apoptosis in alloreactive cytotoxic T lymphocytes. Nat Med. 1996;2(9):1005–10. https://doi.org/10.1038/nm0996-1005.

    Article  CAS  Google Scholar 

  25. • Cheung AY, Jeffrey JH, Kurji KH, Denny MR, Govil A, Holland EJ. Presence of panel-reactive antibodies after penetrating keratoplasty. Ocul Immunol Inflamm 2022:1–7. https://doi.org/10.1080/09273948.2022.2060263This cross-sectional/retrospective study evaluated the change in panel-reactive antibody percentage after penetrating keratoplasty.

  26. The collaborative corneal transplantation studies (CCTS). Effectiveness of histocompatibility matching in high-risk corneal transplantation. The Collaborative Corneal Transplantation Studies Research Group. Arch Ophthalmol 1992;110(10):1392–403. (https://www.ncbi.nlm.nih.gov/pubmed/1417537).

  27. Niederkorn JY, Larkin DF. Immune privilege of corneal allografts. Ocul Immunol Inflamm. 2010;18(3):162–71. https://doi.org/10.3109/09273948.2010.486100.

    Article  Google Scholar 

  28. van Essen TH, Roelen DL, Williams KA, Jager MJ. Matching for human leukocyte antigens (HLA) in corneal transplantation — to do or not to do. Prog Retin Eye Res. 2015;46:84–110. https://doi.org/10.1016/j.preteyeres.2015.01.001.

    Article  CAS  Google Scholar 

  29. Reinhard T, Bohringer D, Enczmann J, et al. HLA class I and II matching improves prognosis in penetrating normal-risk keratoplasty. Dev Ophthalmol. 2003;36:42–9. https://doi.org/10.1159/000067654.

    Article  Google Scholar 

  30. Beekhuis WH, Bartels M, Doxiadis II, van Rij G. Degree of compatibility for HLA-A and -B affects outcome in high-risk corneal transplantation. Dev Ophthalmol. 2003;36:12–21. https://doi.org/10.1159/000067652.

    Article  Google Scholar 

  31. • Armitage WJ, Winton HL, Jones MNA, et al. Corneal transplant follow-up study II: a randomised trial to determine whether HLA class II matching reduces the risk of allograft rejection in penetrating keratoplasty. Br J Ophthalmol. 2022;106(1):42–6. https://doi.org/10.1136/bjophthalmol-2020-317543. This is a randomized controlled trial that sought to understand the relationship between matching HLA II and the success rate of high-risk penetration keratoplasty.

    Article  Google Scholar 

  32. Dunn SP, Stark WJ, Stulting RD, et al. The effect of ABO blood incompatibility on corneal transplant failure in conditions with low-risk of graft rejection. Am J Ophthalmol. 2009;147(3):432-438 e3. https://doi.org/10.1016/j.ajo.2008.09.021.

    Article  Google Scholar 

  33. Inoue K, Tsuru T. ABO antigen blood-group compatibility and allograft rejection in corneal transplantation. Acta Ophthalmol Scand. 1999;77(5):495–9. https://doi.org/10.1034/j.1600-0420.1999.770501.x.

    Article  CAS  Google Scholar 

  34. Randleman JB, Stulting RD. Prevention and treatment of corneal graft rejection: current practice patterns (2004). Cornea. 2006;25(3):286–90. https://doi.org/10.1097/01.ico.0000178731.42187.46.

    Article  Google Scholar 

  35. Jabbehdari S, Rafii AB, Yazdanpanah G, Hamrah P, Holland EJ, Djalilian AR. Update on the management of high-risk penetrating keratoplasty. Curr Ophthalmol Rep. 2017;5(1):38–48. https://doi.org/10.1007/s40135-017-0119-2.

    Article  Google Scholar 

  36. • Said OM, Saleh MGA, Omar AF, Abdou AA, Riad Mostafa AN. Topical difluprednate for early corneal graft rejection after penetrating keratoplasty. Clin Ophthalmol. 2020;14:3495–8. https://doi.org/10.2147/OPTH.S267888. This retrospective study found topical difluprednate is potentially effective and safe in preventing graft rejection after penetrating keratoplasty.

    Article  Google Scholar 

  37. •• Sorkin N, Yang Y, Mednick Z, et al. Outcomes of difluprednate treatment for corneal graft rejection. Can J Ophthalmol. 2020;55(1):82–6. https://doi.org/10.1016/j.jcjo.2019.07.010. This retrospective series found that high-dose difluprednate treated PK endothelial rejection well, especially in non-high-risk grafts (compared to high-risk).

    Article  Google Scholar 

  38. • AzevedoMagalhaes O, ShalabyBardan A, Zarei-Ghanavati M, Liu C. Literature review and suggested protocol for prevention and treatment of corneal graft rejection. Eye (Lond). 2020;34(3):442–50. https://doi.org/10.1038/s41433-019-0517-9. This review highlighted available treatments and suggested treatment and prevention protocols for graft rejection.

    Article  Google Scholar 

  39. Vinciguerra P, Albe E, Vinciguerra R, et al. Long-term resolution of immunological graft rejection after a dexamethasone intravitreal implant. Cornea. 2015;34(4):471–4. https://doi.org/10.1097/ICO.0000000000000391.

    Article  Google Scholar 

  40. Hill JC, Ivey A. Corticosteroids in corneal graft rejection: double versus single pulse therapy. Cornea. 1994;13(5):383–8. https://doi.org/10.1097/00003226-199409000-00002.

    Article  CAS  Google Scholar 

  41. Lee JJ, Kim MK, Wee WR. Adverse effects of low-dose systemic cyclosporine therapy in high-risk penetrating keratoplasty. Graefes Arch Clin Exp Ophthalmol. 2015;253(7):1111–9. https://doi.org/10.1007/s00417-015-3008-0.

    Article  CAS  Google Scholar 

  42. • Tapia C, Nessel TA, Zito PM. Cyclosporine. StatPearls Publishing, Treasure Island (FL). 2018. This lays out the mechanism of action that cyclosposrine can have on preventing allograft immune rejection.

    Google Scholar 

  43. Price MO, Price FW Jr. Efficacy of topical cyclosporine 0.05% for prevention of cornea transplant rejection episodes. Ophthalmology. 2006;113(10):1785–90. https://doi.org/10.1016/j.ophtha.2006.05.022.

    Article  Google Scholar 

  44. Unal M, Yucel I. Evaluation of topical ciclosporin 0.05% for prevention of rejection in high-risk corneal grafts. Br J Ophthalmol. 2008;92(10):1411–4. https://doi.org/10.1136/bjo.2008.143024.

    Article  CAS  Google Scholar 

  45. •• Chatterjee S, Agrawal D. Use of topical cyclosporine 0.1% in therapeutic penetrating keratoplasty for fungal keratitis. Cornea 2021. https://doi.org/10.1097/ICO.0000000000002827. This prospective case series determined that topical cyclosporin 0.1% increased graft survival with high-risk patients (following fungal keratitis).

  46. Holland EJ, Olsen TW, Ketcham JM, et al. Topical cyclosporin A in the treatment of anterior segment inflammatory disease. Cornea. 1993;12(5):413–9. https://doi.org/10.1097/00003226-199309000-00008.

    Article  CAS  Google Scholar 

  47. Cosar CB, Laibson PR, Cohen EJ, Rapuano CJ. Topical cyclosporine in pediatric keratoplasty. Eye Contact Lens. 2003;29(2):103–7. https://doi.org/10.1097/01.ICL.0000062460.03555.32.

    Article  Google Scholar 

  48. Inoue K, Amano S, Kimura C, et al. Long-term effects of topical cyclosporine A treatment after penetrating keratoplasty. Jpn J Ophthalmol. 2000;44(3):302–5. https://doi.org/10.1016/s0021-5155(99)00223-3.

    Article  CAS  Google Scholar 

  49. Belin MW, Bouchard CS, Frantz S, Chmielinska J. Topical cyclosporine in high-risk corneal transplants. Ophthalmology. 1989;96(8):1144–50. https://doi.org/10.1016/s0161-6420(89)32756-4.

    Article  CAS  Google Scholar 

  50. Hill JC. Systemic cyclosporine in high-risk keratoplasty. Short- versus long-term therapy Ophthalmology. 1994;101(1):128–33. https://doi.org/10.1016/s0161-6420(13)31253-6.

    Article  CAS  Google Scholar 

  51. Reinhard T, Mayweg S, Sokolovska Y, et al. Systemic mycophenolate mofetil avoids immune reactions in penetrating high-risk keratoplasty: preliminary results of an ongoing prospectively randomized multicentre study. Transpl Int. 2005;18(6):703–8. https://doi.org/10.1111/j.1432-2277.2005.00126.x.

    Article  CAS  Google Scholar 

  52. Bali S, Filek R, Si F, Hodge W. Systemic immunosuppression in high-risk penetrating keratoplasty a systematic review. J Clin Med Res. 2016;8(4):269–76. https://doi.org/10.14740/jocmr2326w.

    Article  CAS  Google Scholar 

  53. Shi W, Chen M, Xie L, et al. A novel cyclosporine a drug-delivery system for prevention of human corneal rejection after high-risk keratoplasty: a clinical study. Ophthalmology. 2013;120(4):695–702. https://doi.org/10.1016/j.ophtha.2012.09.035.

    Article  Google Scholar 

  54. Shimmura-Tomita M, Shimmura S, Satake Y, et al. Keratoplasty postoperative treatment update. Cornea. 2013;32(Suppl 1):S60–4. https://doi.org/10.1097/ICO.0b013e3182a2c937.

    Article  Google Scholar 

  55. •• Li X, Zhang YN, Yin MY, Pan ZQ. The effectiveness and safety of topical 0.1% tacrolimus after high-risk penetrating keratoplasty. Zhonghua Yan Ke Za Zhi. 2019;55(6):419–27. https://doi.org/10.3760/cma.j.issn.0412-4081.2019.06.004. This study compared topical tacrolimus and topical CsA in patients with high-risk keratoplasty.

    Article  CAS  Google Scholar 

  56. Magalhaes OA, Marinho DR, Kwitko S. Topical 0.03% tacrolimus preventing rejection in high-risk corneal transplantation: a cohort study. Br J Ophthalmol. 2013;97(11):1395–8. https://doi.org/10.1136/bjophthalmol-2013-303639.

    Article  Google Scholar 

  57. Xiang D, Wang Y, Jia Y, et al. The observation of tacrolimus eye drops preventing the early immunological rejection after penetrating keratoplasty for fungal keratitis. [Zhonghua yan ke za Zhi] Chinese J Ophthalmol. 2017;53(4):305–10.

    CAS  Google Scholar 

  58. Dhaliwal JS, Mason BF, Kaufman SC. Long-term use of topical tacrolimus (FK506) in high-risk penetrating keratoplasty. Cornea. 2008;27(4):488–93.

    Article  Google Scholar 

  59. Wang M, Lin Y, Chen J, Liu Y, Xie H, Ye C. Studies on the effects of the immunosuppressant FK-506 on the high-risk corneal graft rejection. Yan ke xue bao (2016) 2002;18(3):160–164.

  60. • Hashemian MN, Latifi G, Ghaffari R, et al. Topical tacrolimus as adjuvant therapy to corticosteroids in acute endothelial graft rejection after penetrating keratoplasty: a randomized controlled trial. Cornea. 2018;37(3):307–12. https://doi.org/10.1097/ICO.0000000000001408. This randomized controlled trial measured the ability of tacrolimus to reverse a rejection episode and the time it took for that reversal of the episode to transpire.

    Article  Google Scholar 

  61. •• Zhai LY, Zhang XR, Liu H, Ma Y, Xu HC. Observation of topical tacrolimus on high-risk penetrating keratoplasty patients: a randomized clinical trial study. Eye (Lond). 2020;34(9):1600–7. https://doi.org/10.1038/s41433-019-0717-3. This randomized clinical trial study compared topical tacrolimus to cyclosporin and came to the conclusion that tacrolimus was more efficacious with less side effects.

    Article  CAS  Google Scholar 

  62. •• Qi X, Wang L, Zhang X, Liu M, Gao H. Topical administration of tacrolimus and corticosteroids in tapering doses is effective in preventing immune rejection in high-risk keratoplasty: a 5-year follow-up study. BMC Ophthalmol. 2022;22(1):1–7. This 5 year follow-up study found that topical tacrolimus and corticosteroids in tapering doses decreased the incidence of immune rejection in high-risk keratoplasty.

    Article  Google Scholar 

  63. •• Faramarzi A, Abbasi H, Feizi S, et al. Topical 0.03% tacrolimus versus systemic mycophenolate mofetil as adjuncts to systemic corticosteroids for preventing graft rejection after repeat keratoplasty: one-year results of a randomized clinical trial. Eye (Lond). 2021;35(10):2879–88. https://doi.org/10.1038/s41433-020-01375-z. This randomized control trial found MMF was comparable to topical tacrolimus in reducing endothelial graft rejection with 12 months follow-up.

    Article  CAS  Google Scholar 

  64. Joseph A, Raj D, Shanmuganathan V, Powell RJ, Dua HS. Tacrolimus immunosuppression in high-risk corneal grafts. Br J Ophthalmol. 2007;91(1):51–5. https://doi.org/10.1136/bjo.2006.097428.

    Article  CAS  Google Scholar 

  65. Sloper CM, Powell RJ, Dua HS. Tacrolimus (FK506) in the management of high-risk corneal and limbal grafts. Ophthalmology. 2001;108(10):1838–44. https://doi.org/10.1016/s0161-6420(01)00759-x.

    Article  CAS  Google Scholar 

  66. Chow SP, Cook SD, Tole DM. Long-term outcomes of high-risk keratoplasty in patients receiving systemic immunosuppression. Cornea. 2015;34(11):1395–9. https://doi.org/10.1097/ICO.0000000000000615.

    Article  Google Scholar 

  67. • Painter SL, Rana M, Barua A, et al. Outcomes following tacrolimus systemic immunosuppression for penetrating keratoplasty in infants and young children. Eye (Lond). 2021. https://doi.org/10.1038/s41433-021-01855-w. This retrospective, consecutive, cohort study found tacrolimus was effective for pediatric patients with penetrating keratoplasty in providing high 1 year graft survival.

    Article  Google Scholar 

  68. Shi W, Gao H, Xie L, Wang S. Sustained intraocular rapamycin delivery effectively prevents high-risk corneal allograft rejection and neovascularization in rabbits. Invest Ophthalmol Vis Sci. 2006;47(8):3339–44. https://doi.org/10.1167/iovs.05-1425.

    Article  Google Scholar 

  69. Birnbaum F, Reis A, Böhringer D, et al. An open prospective pilot study on the use of rapamycin after penetrating high-risk keratoplasty. Transplantation. 2006;81(5):767–72.

    Article  CAS  Google Scholar 

  70. • Haber SL, Benson V, Buckway CJ, Gonzales JM, Romanet D, Scholes B. Lifitegrast: a novel drug for patients with dry eye disease. Ther Adv Ophthalmol. 2019;11:2515841419870366. https://doi.org/10.1177/2515841419870366. This article evaluates lifitegrast’s pharmacology profile in terms of safety, dosage, and efficacy. It considers the possibility for off-label use in other ocular diseases.

    Article  Google Scholar 

  71. Szaflik JP, Major J, Izdebska J, Lao M, Szaflik J. Systemic immunosuppression with mycophenolate mofetil to prevent corneal graft rejection after high-risk penetrating keratoplasty: a 2-year follow-up study. Graefes Arch Clin Exp Ophthalmol. 2016;254(2):307–14. https://doi.org/10.1007/s00417-015-3200-2.

    Article  CAS  Google Scholar 

  72. Birnbaum F, Mayweg S, Reis A, et al. Mycophenolate mofetil (MMF) following penetrating high-risk keratoplasty: long-term results of a prospective, randomised, multicentre study. Eye (Lond). 2009;23(11):2063–70. https://doi.org/10.1038/eye.2008.402.

    Article  CAS  Google Scholar 

  73. Reinhard T, Reis A, Bohringer D, et al. Systemic mycophenolate mofetil in comparison with systemic cyclosporin A in high-risk keratoplasty patients: 3 years’ results of a randomized prospective clinical trial. Graefes Arch Clin Exp Ophthalmol. 2001;239(5):367–72. https://doi.org/10.1007/s004170100285.

    Article  CAS  Google Scholar 

  74. Reis A, Reinhard T, Voiculescu A, et al. Mycophenolate mofetil versus cyclosporin A in high risk keratoplasty patients: a prospectively randomised clinical trial. Br J Ophthalmol. 1999;83(11):1268–71. https://doi.org/10.1136/bjo.83.11.1268.

    Article  CAS  Google Scholar 

  75. Birnbaum F, Bohringer D, Sokolovska Y, Sundmacher R, Reinhard T. Immunosuppression with cyclosporine A and mycophenolate mofetil after penetrating high-risk keratoplasty: a retrospective study. Transplantation. 2005;79(8):964–8. https://doi.org/10.1097/01.tp.0000158022.62059.f2.

    Article  CAS  Google Scholar 

  76. Chatel M-A, Larkin DF. Sirolimus and mycophenolate as combination prophylaxis in corneal transplant recipients at high rejection risk. Am J Ophthalmol. 2010;150(2):179–84.

    Article  CAS  Google Scholar 

  77. Coscia LA, Armenti DP, King RW, Sifontis NM, Constantinescu S, Moritz MJ. Update on the Teratogenicity of Maternal Mycophenolate Mofetil. J Pediatr Genet. 2015;4(2):42–55. https://doi.org/10.1055/s-0035-1556743.

    Article  CAS  Google Scholar 

  78. Betancourt NR, Sanchez-Huerta V, Valencia CO, del Río LEC, Reyes CRR. Methotrexate and graft survival in high risk corneal transplantations. Invest Ophthalmol Vis Sci. 2017;58(8):5666–5666.

    Google Scholar 

  79. •• Joshi SS, N.S.;Deshpande, C.M. Efficacy of postoperative systematic immunosuppression with methotrexate in high risk penetrating keratoplasty. Clinics in Surgery 2019;4:2420. This was a retrospective study that evaluated systemic methotrexate compared to standard corticosteroids for graft clarity at a year of follow-up.

  80. Bertelmann E, Reinhard T, Pleyer U. Current practice of immune prophylaxis and therapy in perforating keratoplasty A survey of members of the Cornea Section of the German Ophthalmological Society. Ophthalmologe. 2003;100(12):1031–5. https://doi.org/10.1007/s00347-003-0953-5.

    Article  CAS  Google Scholar 

  81. Elliott JH, Leibowitz HM. The influence of immunosuppressive agents upon corneal wound healing. I. Systemic azathioprine. Arch Ophthalmol. 1966;76(3):334–7. https://doi.org/10.1001/archopht.1966.03850010336006.

    Article  CAS  Google Scholar 

  82. Barraquer J. Immunosuppressive agents in penetrating keratoplasty. Am J Ophthalmol. 1985;100(1):61–4. https://doi.org/10.1016/s0002-9394(14)74983-9.

    Article  CAS  Google Scholar 

  83. Nguyen P, Barte F, Kang S, Shinada S, Song J, Yiu S. A novel pharmaceutical protocol for management of immunogenic rejection following repeat penetrating keratoplasty. Invest Ophthalmol Vis Sci. 2008;49(13):5757–5757.

    Google Scholar 

  84. Nguyen P, Barte F, Shinada S, Yiu SC. Management of corneal graft rejection — a case series report and review of the literature. J Clin Exp Ophthalmol 2010;1(103). https://doi.org/10.4172/2155-9570.1000103.

  85. • Fu L, Baker ML, Carley F, Au L. Subconjunctival ab externo gel stent implantation for refractory glaucoma after high-risk penetrating keratoplasty. Cureus. 2020;12(6):e8873. https://doi.org/10.7759/cureus.8873. This case study demonstrated a high-risk penetration keratoplasty for peripheral ulcerative keratitis 10 years prior that remained clear; early treatment involved cyclophosphamide, azathioprine, and corticosteroids.

    Article  Google Scholar 

  86. Sudhir RR, Rao SK, Shanmugam MP, Padmanabhan P. Bilateral macular hemorrhage caused by azathioprine-induced aplastic anemia in a corneal graft recipient. Cornea. 2002;21(7):712–4. https://doi.org/10.1097/00003226-200210000-00016.

    Article  Google Scholar 

  87. Joshi SA, Deshpande M. High-risk penetrating keratoplasty. Journal of Clinical Ophthalmology and Research. 2016;4(3):163.

    Article  Google Scholar 

  88. Birnbaum F, Jehle T, Schwartzkopff J, et al. Basiliximab als Monotherapie nach perforierender Risikokeratoplastik-eine prospektive randomisierte Pilotstudie. Klin Monbl Augenheilkd. 2008;225(01):62–5.

    Article  CAS  Google Scholar 

  89. Schmitz K, Hitzer S, Behrens-Baumann W. [Immune suppression by combination therapy with basiliximab and cyclosporin in high risk keratoplasty. A pilot study]. Ophthalmologe. 2002;99(1):38–45. https://doi.org/10.1007/pl00007114.

    Article  CAS  Google Scholar 

  90. • Papadopoulos Z. Aflibercept A review of its effect on the treatment of exudative age-related macular degeneration. Eur J Ophthalmol. 2019;29(4):368–78. https://doi.org/10.1177/1120672119832432. This article reviews landmark clinical studies pharmacology, pharmacokinetics, safety, and effectiveness of Aflibercep.

    Article  Google Scholar 

  91. •• Trufanov S, Malozhen S, Krakhmaleva D, Surnina Z, Pivin E, Kasparova E. Antiangiogenic therapy in high-risk keratoplasty. Vestn oftalmol. 2020;136(4):11–8. This study compared Aflibercept, Aflibercept with laser photocoagulation, and control for the treatment of high-risk keratoplasty.

    Article  CAS  Google Scholar 

  92. •• Hos D, Le VNH, Hellmich M, et al. Risk of corneal graft rejection after high-risk keratoplasty following fine-needle vessel coagulation of corneal neovascularization combined with bevacizumab: a pilot study. Transplant Direct. 2019;5(5):e452. https://doi.org/10.1097/TXD.0000000000000894. This pilot study looked at rejection rates and survival probabilities for bevacizumab with vessel cauterization to treat high-risk keratoplasty.

    Article  Google Scholar 

  93. •• Dohlman TH, McSoley M, Amparo F, et al. Bevacizumab in high-risk corneal transplantation: a pilot multicenter prospective randomized control trial. Ophthalmology. 2022;129(8):865–79. https://doi.org/10.1016/j.ophtha.2022.03.024. This randomized control trial studied subconjunctival and topical bevacizumab compared to control to treat high-risk keratoplasty.

    Article  Google Scholar 

  94. Holland EJ, Mogilishetty G, Skeens HM, et al. Systemic immunosuppression in ocular surface stem cell transplantation: results of a 10-year experience. Cornea. 2012;31(6):655–61. https://doi.org/10.1097/ICO.0b013e31823f8b0c.

    Article  Google Scholar 

  95. Movahedan A, Cheung AY, Eslani M, Mogilishetty G, Govil A, Holland EJ. Long-term outcomes of ocular surface stem cell allograft transplantation. Am J Ophthalmol. 2017;184:97–107.

    Article  Google Scholar 

  96. • Chen Y, Wang X, Gao M, Gao R, Song L. The effect of loteprednol suspension eye drops after corneal transplantation. BMC Ophthalmol. 2021;21(1):234. https://doi.org/10.1186/s12886-021-01982-8. This study found similar vision loss and incidence of postoperative rejection between postoperative loteprednol and prednisolone for low- and high-risk keratoplasty.

    Article  CAS  Google Scholar 

  97. • Magnier F, Dutheil F, Pereira B, et al. Preventive treatment of allograft rejection after endothelial keratoplasty: a systematic review and meta-analysis. Acta Ophthalmol. 2022;100(5):e1061–73. https://doi.org/10.1111/aos.15154. Meta-analysis of preventive treatment efficacy against allograft rejection after endothelial keratoplasty.

    Article  Google Scholar 

  98. Reinhard T, Mayweg S, Reis A, Sundmacher R. Topical FK506 as immunoprophylaxis after allogeneic penetrating normal-risk keratoplasty: a randomized clinical pilot study. Transpl Int. 2005;18(2):193–7. https://doi.org/10.1111/j.1432-2277.2004.00006.x.

    Article  CAS  Google Scholar 

  99. • Yasir M, Goyal A, Sonthalia S. Corticosteroid adverse effects. StatPearls. Treasure Island (FL)2022. Discusses adverse events associated with corticosteroids.

  100. Poon A, Forbes J, Dart J, et al. Systemic cyclosporin A in high risk penetrating keratoplasties: a case-control study. Br J Ophthalmol. 2001;85(12):1464–9.

    Article  CAS  Google Scholar 

  101. Yamazoe K, Yamazoe K, Yamaguchi T, Omoto M, Shimazaki J. Efficacy and safety of systemic tacrolimus in high-risk penetrating keratoplasty after graft failure with systemic cyclosporine. Cornea. 2014;33(11):1157–63. https://doi.org/10.1097/ICO.0000000000000258.

    Article  Google Scholar 

  102. • Bachmann BO, Pleyer U, Maier PC, Reinhard T, Seitz B, Cursiefen C. Perioperative/Postoperative Anti-Inflammatory Therapy During/After Corneal Surgery/Transplantation. Klin Monbl Augenheilkd. 2019;236(5):653–61. https://doi.org/10.1055/a-0864-4793. Discussion of postoperative management following keratoplasty and supplemental systemic immunosuppressive therapy after high-risk transplants.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert Y. Cheung.

Ethics declarations

Conflict of Interest

AYC has consulted for LayerBio and Sight Sciences. EJH has consulted for Alcon Laboratories, Allergan, Bausch and Lomb, Kala Pharmaceuticals, Mati Pharmaceuticals, and Senju Pharmaceuticals. AMA and CBR do not have any financial disclosures.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Cornea

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azam, A.M., Reinisch, C.B., Holland, E.J. et al. Immunosuppressive Therapy for High-Risk Corneal Transplant. Curr Ophthalmol Rep 10, 114–129 (2022). https://doi.org/10.1007/s40135-022-00298-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40135-022-00298-0

Keywords

Navigation