Skip to main content
Log in

MR Vascular Imaging: Update on New Techniques and Protocols

  • Cardiovascular Imaging (Hamid Chalian, Section Editor)
  • Published:
Current Radiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Review the advantages and disadvantages of magnetic resonance angiography (MRA) compared to computed tomography angiography (CTA), determinants of MRA image quality, vascular MRA indications, and the potential pitfalls with MRA.

Recent Findings

Growing accessibility and experience with MRA have established specific optimized imaging protocols for evaluation of different vascular structures such as the coronary arteries, thoracic aorta and aortic valve, pulmonary arteries, renal and mesenteric vasculature, and for specific vascular pathologic conditions like vasculitis and vascular malformations. Alternative MRA techniques have been proposed in recent years to enable patients with contraindications to gadolinium-based contrast agents complete diagnostic imaging.

Summary

MRA is a useful non-invasive imaging modality for evaluating vascular anatomy and pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Adapted from Primrose et al. [1•]

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

Papers of particular interest, published recently have been highlighted as: • Of importance •• Of major importance

  1. • Primrose CW, Hecht EM, Roditi G, Francois CJ, Maki JH, Dumoulin CL, et al. MR angiography series: fundamentals of contrast-enhanced MR angiography. Radiographics. 2021;41(4):E138–9. This tutorial made by Society of Magnetic Resonance Angiography (SMRA) members review the fundamental principles of magnetic resonance angiography (MRA), including optimizing MRA sequences and MRA pitfalls.

  2. •• Rajiah P. Updates in vascular computed tomography. Radiol Clin North Am. 2020;58(4):671–91. This paper reports recent advances in computed tomography angiography, including its strengths and pitfalls.

  3. Edelman RR, Koktzoglou I. Noncontrast MR angiography: an update. J Magn Reson Imaging. 2019;49(2):355–73.

    Article  PubMed  Google Scholar 

  4. Korosec FR, Frayne R, Grist TM, Mistretta CA. Time-resolved contrast-enhanced 3D MR angiography. Magn Reson Med. 1996;36(3):345–51.

    Article  CAS  PubMed  Google Scholar 

  5. Suh YJ, Yoon SH, Hong H, Hahn S, Kang DY, Kang HR, et al. Acute adverse reactions to nonionic iodinated contrast media: a meta-analysis. Invest Radiol. 2019;54(9):589–99.

    Article  CAS  PubMed  Google Scholar 

  6. Gerstman BB. Epidemiologic critique of the report on adverse reactions to ionic and nonionic media by the Japanese Committee on the Safety of Contrast Media. Radiology. 1991;178(3):787–90.

    Article  CAS  PubMed  Google Scholar 

  7. Behzadi AH, Zhao Y, Farooq Z, Prince MR. Immediate allergic reactions to gadolinium-based contrast agents: a systematic review and meta-analysis. Radiology. 2018;286(2):471–82.

    Article  PubMed  Google Scholar 

  8. Xiao YD, Paudel R, Liu J, Ma C, Zhang ZS, Zhou SK. MRI contrast agents: classification and application (Review). Int J Mol Med. 2016;38(5):1319–26.

    Article  CAS  PubMed  Google Scholar 

  9. Shokrollahi H. Contrast agents for MRI. Mater Sci Eng C Mater Biol Appl. 2013;33(8):4485–97.

    Article  CAS  PubMed  Google Scholar 

  10. Caravan P, Ellison JJ, McMurry TJ, Lauffer RB. Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications. Chem Rev. 1999;99(9):2293–352.

    Article  CAS  PubMed  Google Scholar 

  11. Elster AD, Sobol WT, Hinson WH. Pseudolayering of Gd-DTPA in the urinary bladder. Radiology. 1990;174(2):379–81.

    Article  CAS  PubMed  Google Scholar 

  12. •• Jalili MH, Yu T, Hassani C, Prosper AE, Finn JP, Bedayat A. Contrast-enhanced MR angiography without gadolinium-based contrast material: clinical applications using ferumoxytol. Radiol Cardiothorac Imaging. 2022;4(4): e210323. This paper describes the the vascular imaging indications for off-label use of ferumoxytol for contrast-enhanced magnetic resonance angiography.

  13. •• Shahrouki P, Khan SN, Yoshida T, Iskander PJ, Ghahremani S, Finn JP. High-resolution threedimensional contrastenhanced magnetic resonance venography in children: comparison of gadofosveset trisodium with ferumoxytol. Pediatr Radiol. 2022;52(3):501–12. Study comparing the off-label use of ferumoxytol as a contrast agent for magnetic resonance angiography (MRA) with the previously available blood pool agent gadofosveset trisodium in a pediatric patients.

  14. • Shahrouki P, Nguyen KL, Moriarty JM, Plotnik AN, Yoshida T, Finn JP. Minimizing table time in patients with claustrophobia using focused ferumoxytol-enhanced MR angiography (f-FEMRA): a feasibility study. Br J Radiol. 2021;94(1125):20210430. Stud describing the use of a focused magnetic resonance angiography (MRA) protocol to shorten scanning time in patients with claustrophobia, and how the image quality of these studies compares to that of conventional gadolinium-enhanced MRA.

  15. Menke J. Carotid MR angiography with traditional bolus timing: clinical observations and Fourier-based modelling of contrast kinetics. Eur Radiol. 2009;19(11):2654–62.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Riederer SJ, Bernstein MA, Breen JF, Busse RF, Ehman RL, Fain SB, et al. Three-dimensional contrast-enhanced MR angiography with real-time fluoroscopic triggering: design specifications and technical reliability in 330 patient studies. Radiology. 2000;215(2):584–93.

    Article  CAS  PubMed  Google Scholar 

  17. Zhang H, Maki JH, Prince MR. 3D contrast-enhanced MR angiography. J Magn Reson Imaging. 2007;25(1):13–25.

    Article  CAS  PubMed  Google Scholar 

  18. Soher BJ, Dale BM, Merkle EM. A review of MR physics: 3T versus 1.5T. Magn Reson Imaging Clin N Am. 2007;15(3):277–90.

    Article  PubMed  Google Scholar 

  19. Glockner JF, Hu HH, Stanley DW, Angelos L, King K. Parallel MR imaging: a user’s guide. Radiographics. 2005;25(5):1279–97.

    Article  PubMed  Google Scholar 

  20. Diseases GBD, Injuries C. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2020;396(10258):1204–22.

    Article  Google Scholar 

  21. Tsao CW, Aday AW, Almarzooq ZI, Alonso A, Beaton AZ, Bittencourt MS, et al. Heart disease and stroke statistics-2022 update: a report from the American Heart Association. Circulation. 2022;145(8):e153–639.

    Article  PubMed  Google Scholar 

  22. Mangla A, Oliveros E, Williams KA Sr, Kalra DK. Cardiac imaging in the diagnosis of coronary artery disease. Curr Probl Cardiol. 2017;42(10):316–66.

    Article  PubMed  Google Scholar 

  23. Stuber M, Weiss RG. Coronary magnetic resonance angiography. J Magn Reson Imaging. 2007;26(2):219–34.

    Article  PubMed  Google Scholar 

  24. Chiribiri A, Botnar RM, Nagel E. Magnetic resonance coronary angiography: where are we today? Curr Cardiol Rep. 2013;15(2):328.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Weber OM, Martin AJ, Higgins CB. Whole-heart steady-state free precession coronary artery magnetic resonance angiography. Magn Reson Med. 2003;50(6):1223–8.

    Article  PubMed  Google Scholar 

  26. Di Leo G, Fisci E, Secchi F, Ali M, Ambrogi F, Sconfienza LM, et al. Diagnostic accuracy of magnetic resonance angiography for detection of coronary artery disease: a systematic review and meta-analysis. Eur Radiol. 2016;26(10):3706–18.

    Article  PubMed  Google Scholar 

  27. Schuetz GM, Zacharopoulou NM, Schlattmann P, Dewey M. Meta-analysis: noninvasive coronary angiography using computed tomography versus magnetic resonance imaging. Ann Intern Med. 2010;152(3):167–77.

    Article  PubMed  Google Scholar 

  28. Dweck MR, Williams MC, Moss AJ, Newby DE, Fayad ZA. Computed tomography and cardiac magnetic resonance in ischemic heart disease. J Am Coll Cardiol. 2016;68(20):2201–16.

    Article  PubMed  PubMed Central  Google Scholar 

  29. McClure RS, Brogly SB, Lajkosz K, Payne D, Hall SF, Johnson AP. Epidemiology and management of thoracic aortic dissections and thoracic aortic aneurysms in Ontario, Canada: a population-based study. J Thorac Cardiovasc Surg. 2018;155(6):2254-644 e4.

    Article  PubMed  Google Scholar 

  30. Olsson C, Thelin S, Stahle E, Ekbom A, Granath F. Thoracic aortic aneurysm and dissection: increasing prevalence and improved outcomes reported in a nationwide population-based study of more than 14,000 cases from 1987 to 2002. Circulation. 2006;114(24):2611–8.

    Article  PubMed  Google Scholar 

  31. Kuzmik GA, Sang AX, Elefteriades JA. Natural history of thoracic aortic aneurysms. J Vasc Surg. 2012;56(2):565–71.

    Article  PubMed  Google Scholar 

  32. Erbel R, Aboyans V, Boileau C, Bossone E, Bartolomeo RD, Eggebrecht H, et al. ESC Guidelines on the diagnosis and treatment of aortic diseases: document covering acute and chronic aortic diseases of the thoracic and abdominal aorta of the adult. The task force for the diagnosis and treatment of aortic diseases of the European Society of Cardiology (ESC). Eur Heart J. 2014;35(41):2873–926.

    Article  PubMed  Google Scholar 

  33. Hiratzka LF, Bakris GL, Beckman JA, Bersin RM, Carr VF, Casey DE Jr, et al. ACCF/AHA/AATS/ACR/ASA/SCA/SCAI/SIR/STS/SVM Guidelines for the diagnosis and management of patients with thoracic aortic disease. A Report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines, American Association for Thoracic Surgery, American College of Radiology,American Stroke Association, Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, Society of Interventional Radiology, Society of Thoracic Surgeons, and Society for Vascular Medicine. J Am Coll Cardiol. 2010;55(14):e27–129.

    Article  PubMed  Google Scholar 

  34. Yamada I, Nakagawa T, Himeno Y, Kobayashi Y, Numano F, Shibuya H. Takayasu arteritis: diagnosis with breath-hold contrast-enhanced three-dimensional MR angiography. J Magn Reson Imaging. 2000;11(5):481–7.

    Article  CAS  PubMed  Google Scholar 

  35. Yoshioka K, Tanaka R. MRI and MRA of aortic disease. Ann Vasc Dis. 2010;3(3):196–201.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kallianos KG, Burris NS. Imaging thoracic aortic aneurysm. Radiol Clin North Am. 2020;58(4):721–31.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zhu C, Haraldsson H, Kallianos K, Ge L, Tseng E, Henry T, et al. Gated thoracic magnetic resonance angiography at 3T: noncontrast versus blood pool contrast. Int J Cardiovasc Imaging. 2018;34(3):475–83.

    Article  PubMed  Google Scholar 

  38. Francois CJ, Tuite D, Deshpande V, Jerecic R, Weale P, Carr JC. Unenhanced MR angiography of the thoracic aorta: initial clinical evaluation. AJR Am J Roentgenol. 2008;190(4):902–6.

    Article  PubMed  Google Scholar 

  39. Krishnam MS, Tomasian A, Deshpande V, Tran L, Laub G, Finn JP, et al. Noncontrast 3D steady-state free-precession magnetic resonance angiography of the whole chest using nonselective radiofrequency excitation over a large field of view: comparison with single-phase 3D contrast-enhanced magnetic resonance angiography. Invest Radiol. 2008;43(6):411–20.

    Article  PubMed  Google Scholar 

  40. Moore AJE, Wachsmann J, Chamarthy MR, Panjikaran L, Tanabe Y, Rajiah P. Imaging of acute pulmonary embolism: an update. Cardiovasc Diagn Ther. 2018;8(3):225–43.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Allen BD, Schiebler ML, Francois CJ. Pulmonary vascular disease evaluation with magnetic resonance angiography. Radiol Clin North Am. 2020;58(4):707–19.

    Article  PubMed  Google Scholar 

  42. Nagle SK, Schiebler ML, Repplinger MD, Francois CJ, Vigen KK, Yarlagadda R, et al. Contrast enhanced pulmonary magnetic resonance angiography for pulmonary embolism: building a successful program. Eur J Radiol. 2016;85(3):553–63.

    Article  PubMed  Google Scholar 

  43. Kluge A, Luboldt W, Bachmann G. Acute pulmonary embolism to the subsegmental level: diagnostic accuracy of three MRI techniques compared with 16-MDCT. AJR Am J Roentgenol. 2006;187(1):W7-14.

    Article  PubMed  Google Scholar 

  44. Bley TA, Wieben O, Uhl M, Thiel J, Schmidt D, Langer M. High-resolution MRI in giant cell arteritis: imaging of the wall of the superficial temporal artery. AJR Am J Roentgenol. 2005;184(1):283–7.

    Article  PubMed  Google Scholar 

  45. Guggenberger KV, Bley TA. Magnetic resonance imaging and magnetic resonance angiography in large-vessel vasculitides. Clin Exp Rheumatol. 2018;114(5):103–7.

    Google Scholar 

  46. Saam T, Habs M, Pollatos O, Cyran C, Pfefferkorn T, Dichgans M, et al. High-resolution black-blood contrast-enhanced T1 weighted images for the diagnosis and follow-up of intracranial arteritis. Br J Radiol. 2010;83(993):e182–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dejaco C, Ramiro S, Duftner C, Besson FL, Bley TA, Blockmans D, et al. EULAR recommendations for the use of imaging in large vessel vasculitis in clinical practice. Ann Rheum Dis. 2018;77(5):636–43.

    Article  PubMed  Google Scholar 

  48. Hartung MP, Grist TM, Francois CJ. Magnetic resonance angiography: current status and future directions. J Cardiovasc Magn Reson. 2011;13:19.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Busse RF, Brau AC, Vu A, Michelich CR, Bayram E, Kijowski R, et al. Effects of refocusing flip angle modulation and view ordering in 3D fast spin echo. Magn Reson Med. 2008;60(3):640–9.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Mugler JP 3rd. Optimized three-dimensional fast-spin-echo MRI. J Magn Reson Imaging. 2014;39(4):745–67.

    Article  PubMed  Google Scholar 

  51. Guggenberger K, Bley T. Imaging in large vessel vasculitides. Rofo. 2019;191(12):1083–90.

    Article  PubMed  Google Scholar 

  52. Friedrich MG, Sechtem U, Schulz-Menger J, Holmvang G, Alakija P, Cooper LT, et al. Cardiovascular magnetic resonance in myocarditis: a JACC white paper. J Am Coll Cardiol. 2009;53(17):1475–87.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Hussein A, Malguria N. Imaging of vascular malformations. Radiol Clin North Am. 2020;58(4):815–30.

    Article  PubMed  Google Scholar 

  54. Jackson IT, Carreno R, Potparic Z, Hussain K. Hemangiomas, vascular malformations, and lymphovenous malformations: classification and methods of treatment. Plast Reconstr Surg. 1993;91(7):1216–30.

    Article  CAS  PubMed  Google Scholar 

  55. Dubois J, Alison M. Vascular anomalies: what a radiologist needs to know. Pediatr Radiol. 2010;40(6):895–905.

    Article  PubMed  Google Scholar 

  56. Flors L, Leiva-Salinas C, Maged IM, Norton PT, Matsumoto AH, Angle JF, et al. MR imaging of soft-tissue vascular malformations: diagnosis, classification, and therapy follow-up. Radiographics. 2011;31(5):1321–40 (discussion 40–41).

    Article  PubMed  Google Scholar 

  57. Nosher JL, Murillo PG, Liszewski M, Gendel V, Gribbin CE. Vascular anomalies: a pictorial review of nomenclature, diagnosis and treatment. World J Radiol. 2014;6(9):677–92.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Fujima N, Osanai T, Shimizu Y, Yoshida A, Harada T, Nakayama N, et al. Utility of noncontrast-enhanced time-resolved four-dimensional MR angiography with a vessel-selective technique for intracranial arteriovenous malformations. J Magn Reson Imaging. 2016;44(4):834–45.

    Article  PubMed  Google Scholar 

  59. Attenberger UI, Morelli JN, Schoenberg SO, Michaely HJ. Assessment of the kidneys: magnetic resonance angiography, perfusion and diffusion. J Cardiovasc Magn Reson. 2011;13(1):70.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Bongartz G, Mayr M, Bilecen D. Magnetic resonance angiography (MRA) in renally impaired patients: when and how. Eur J Radiol. 2008;66(2):213–9.

    Article  PubMed  Google Scholar 

  61. Radiology ACo. American College of Radiology Manual on Contrast Media 2018. Available from: https://www.acr.org/Clinical-Resources/Contrast-Manual.

  62. Ledneva E, Karie S, Launay-Vacher V, Janus N, Deray G. Renal safety of gadolinium-based contrast media in patients with chronic renal insufficiency. Radiology. 2009;250(3):618–28.

    Article  PubMed  Google Scholar 

  63. Braidy C, Daou I, Diop AD, Helweh O, Gageanu C, Boyer L, et al. Unenhanced MR angiography of renal arteries: 51 patients. Am J Roentgenol. 2012;199(5):W629–37.

    Article  Google Scholar 

  64. Yamuna J, Chandrasekharan A, Rangasami R, Ramalakshmi S, Joseph S. Unenhanced renal magnetic resonance angiography in patients with chronic kidney disease & #38; suspected renovascular hypertension: can it affect patient management? Indian J Med Res. 2017;146(8):22–9.

    Article  CAS  Google Scholar 

  65. Toth GB, Varallyay CG, Horvath A, Bashir MR, Choyke PL, Daldrup-Link HE, et al. Current and potential imaging applications of ferumoxytol for magnetic resonance imaging. Kidney Int. 2017;92(1):47–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Li KC, Whitney WS, McDonnell CH, Fredrickson JO, Pelc NJ, Dalman RL, et al. Chronic mesenteric ischemia: evaluation with phase-contrast cine MR imaging. Radiology. 1994;190(1):175–9.

    Article  CAS  PubMed  Google Scholar 

  67. Burkart DJ, Johnson CD, Reading CC, Ehman RL. MR measurements of mesenteric venous flow: prospective evaluation in healthy volunteers and patients with suspected chronic mesenteric ischemia. Radiology. 1995;194(3):801–6.

    Article  CAS  PubMed  Google Scholar 

  68. Li KC, Hopkins KL, Dalman RL, Song CK. Simultaneous measurement of flow in the superior mesenteric vein and artery with cine phase-contrast MR imaging: value in diagnosis of chronic mesenteric ischemia. Work Progress Radiol. 1995;194(2):327–30.

    CAS  Google Scholar 

  69. Oechtering TH, Roberts GS, Panagiotopoulos N, Wieben O, Roldan-Alzate A, Reeder SB. Abdominal applications of quantitative 4D flow MRI. Abdom Radiol (NY). 2022;47(9):3229–50.

    Article  PubMed  Google Scholar 

  70. Roldan-Alzate A, Francois CJ, Wieben O, Reeder SB. Emerging applications of abdominal 4D Flow MRI. AJR Am J Roentgenol. 2016;207(1):58–66.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Hall Barrientos P, Knight K, Black D, Vesey A, Roditi G. A pilot study investigating the use of 4D flow MRI for the assessment of splanchnic flow in patients suspected of mesenteric ischaemia. Sci Rep. 2021;11(1):5914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Siedek F, Giese D, Weiss K, Ekdawi S, Brinkmann S, Schroeder W, et al. 4D flow MRI for the analysis of celiac trunk and mesenteric artery stenoses. Magn Reson Imaging. 2018;53:52–62.

    Article  PubMed  Google Scholar 

  73. Braidy C, Daou I, Diop AD, Helweh O, Gageanu C, Boyer L, et al. Unenhanced MR angiography of renal arteries: 51 patients. AJR Am J Roentgenol. 2012;199(5):W629–37.

    Article  PubMed  Google Scholar 

  74. Criqui MH, Aboyans V. Epidemiology of peripheral artery disease. Circ Res. 2015;116(9):1509–26.

    Article  CAS  PubMed  Google Scholar 

  75. Fowkes FG, Aboyans V, Fowkes FJ, McDermott MM, Sampson UK, Criqui MH. Peripheral artery disease: epidemiology and global perspectives. Nat Rev Cardiol. 2017;14(3):156–70.

    Article  PubMed  Google Scholar 

  76. Fowkes FG, Rudan D, Rudan I, Aboyans V, Denenberg JO, McDermott MM, et al. Comparison of global estimates of prevalence and risk factors for peripheral artery disease in 2000 and 2010: a systematic review and analysis. Lancet. 2013;382(9901):1329–40.

    Article  PubMed  Google Scholar 

  77. Jens S, Koelemay MJ, Reekers JA, Bipat S. Diagnostic performance of computed tomography angiography and contrast-enhanced magnetic resonance angiography in patients with critical limb ischaemia and intermittent claudication: systematic review and meta-analysis. Eur Radiol. 2013;23(11):3104–14.

    Article  PubMed  Google Scholar 

  78. Ersoy H, Rybicki FJ. MR angiography of the lower extremities. AJR Am J Roentgenol. 2008;190(6):1675–84.

    Article  PubMed  Google Scholar 

  79. Edelman RR, Sheehan JJ, Dunkle E, Schindler N, Carr J, Koktzoglou I. Quiescent-interval single-shot unenhanced magnetic resonance angiography of peripheral vascular disease: technical considerations and clinical feasibility. Magn Reson Med. 2010;63(4):951–8.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Cavallo AU, Koktzoglou I, Edelman RR, Gilkeson R, Mihai G, Shin T, et al. Noncontrast magnetic resonance angiography for the diagnosis of peripheral vascular disease. Circ Cardiovasc Imaging. 2019;12(5): e008844.

    Article  PubMed  Google Scholar 

  81. Offerman EJ, Hodnett PA, Edelman RR, Koktzoglou I. Nonenhanced methods for lower-extremity MRA: a phantom study examining the effects of stenosis and pathologic flow waveforms at 15T. J Magn Reson Imaging. 2011;33(2):401–8.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Saini A, Wallace A, Albadawi H, Naidu S, Alzubaidi S, Knuttinen MG, et al. Quiescent-interval single-shot magnetic resonance angiography. Diagnostics (Basel). 2018;8(4):84.

    Article  CAS  PubMed  Google Scholar 

  83. Varga-Szemes A, Wichmann JL, Schoepf UJ, Suranyi P, De Cecco CN, Muscogiuri G, et al. Accuracy of noncontrast quiescent-interval single-shot lower extremity MR angiography versus CT angiography for diagnosis of peripheral artery disease: comparison with digital subtraction angiography. JACC Cardiovasc Imaging. 2017;10(10 Pt A):1116–24.

    Article  PubMed  Google Scholar 

  84. Altaha MA, Jaskolka JD, Tan K, Rick M, Schmitt P, Menezes RJ, et al. Non-contrast-enhanced MR angiography in critical limb ischemia: performance of quiescent-interval single-shot (QISS) and TSE-based subtraction techniques. Eur Radiol. 2017;27(3):1218–26.

    Article  PubMed  Google Scholar 

  85. Ward EV, Galizia MS, Usman A, Popescu AR, Dunkle E, Edelman RR. Comparison of quiescent inflow single-shot and native space for nonenhanced peripheral MR angiography. J Magn Reson Imaging. 2013;38(6):1531–8.

    Article  PubMed  Google Scholar 

  86. Lim RP, Hecht EM, Xu J, Babb JS, Oesingmann N, Wong S, et al. 3D nongadolinium-enhanced ECG-gated MRA of the distal lower extremities: preliminary clinical experience. J Magn Reson Imaging. 2008;28(1):181–9.

    Article  PubMed  Google Scholar 

  87. Zhang N, Zou L, Huang Y, Liu D, Tang Y, Fan Z, et al. Non-Contrast Enhanced MR Angiography (NCE-MRA) of the calf: a direct comparison between Flow-Sensitive Dephasing (FSD) prepared Steady-State Free Precession (SSFP) and Quiescent-Interval Single-Shot (QISS) in patients with diabetes. PLoS ONE. 2015;10(6): e0128786.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Lehrman ED, Plotnik AN, Hope T, Saloner D. Ferumoxytol-enhanced MRI in the peripheral vasculature. Clin Radiol. 2019;74(1):37–50.

    Article  CAS  PubMed  Google Scholar 

  89. Walker JP, Nosova E, Sigovan M, Rapp J, Grenon MS, Owens CD, et al. Ferumoxytol-enhanced magnetic resonance angiography is a feasible method for the clinical evaluation of lower extremity arterial disease. Ann Vasc Surg. 2015;29(1):63–8.

    Article  PubMed  Google Scholar 

  90. Hope MD, Hope TA, Zhu C, Faraji F, Haraldsson H, Ordovas KG, et al. Vascular imaging with ferumoxytol as a contrast agent. AJR Am J Roentgenol. 2015;205(3):W366–73.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Sigovan M, Gasper W, Alley HF, Owens CD, Saloner D. USPIO-enhanced MR angiography of arteriovenous fistulas in patients with renal failure. Radiology. 2012;265(2):584–90.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Bashir MR, Mody R, Neville A, Javan R, Seaman D, Kim CY, et al. Retrospective assessment of the utility of an iron-based agent for contrast-enhanced magnetic resonance venography in patients with endstage renal diseases. J Magn Reson Imaging. 2014;40(1):113–8.

    Article  PubMed  Google Scholar 

  93. Maki JH, Prince MR, Londy FJ, Chenevert TL. The effects of time varying intravascular signal intensity and k-space acquisition order on three-dimensional MR angiography image quality. J Magn Reson Imaging. 1996;6(4):642–51.

    Article  CAS  PubMed  Google Scholar 

  94. Lee VS, Martin DJ, Krinsky GA, Rofsky NM. Gadolinium-enhanced MR angiography: artifacts and pitfalls. AJR Am J Roentgenol. 2000;175(1):197–205.

    Article  CAS  PubMed  Google Scholar 

  95. Yoshida T, Nguyen KL, Shahrouki P, Quinones-Baldrich WJ, Lawrence PF, Finn JP. Intermodality feature fusion combining unenhanced computed tomography and ferumoxytol-enhanced magnetic resonance angiography for patient-specific vascular mapping in renal impairment. J Vasc Surg. 2020;71(5):1674–84.

    Article  PubMed  Google Scholar 

  96. Grobner T. Gadolinium–a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis? Nephrol Dial Transplant. 2006;21(4):1104–8.

    Article  CAS  PubMed  Google Scholar 

  97. Mathur M, Jones JR, Weinreb JC. Gadolinium deposition and nephrogenic systemic fibrosis: a radiologist’s primer. Radiographics. 2020;40(1):153–62.

    Article  PubMed  Google Scholar 

  98. Radbruch A, Weberling LD, Kieslich PJ, Eidel O, Burth S, Kickingereder P, et al. Gadolinium retention in the dentate nucleus and globus pallidus is dependent on the class of contrast agent. Radiology. 2015;275(3):783–91.

    Article  PubMed  Google Scholar 

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arash Bedayat.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahrouki, P., Jalili, M.H., Kooraki, S. et al. MR Vascular Imaging: Update on New Techniques and Protocols. Curr Radiol Rep 11, 81–95 (2023). https://doi.org/10.1007/s40134-023-00413-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40134-023-00413-4

Keywords

Navigation