Skip to main content
Log in

Enhancing Mechanical Behavior of Silica and Calcareous Sand through Polyurethane Foam, Nanomaterial, and Fiber

  • Original Paper
  • Published:
Indian Geotechnical Journal Aims and scope Submit manuscript

Abstract

While traditional methods of soil stabilization using cement or lime have been extensively researched, there is a notable gap in understanding the mechanical behavior of soil stabilized with innovative materials. This study aims to investigate the mechanical properties of soil stabilized with polyurethane (PU) foam, nanosilica, and basalt fiber. Unconfined compressive strength (UCS) and direct shear tests were conducted on reconstituted silica and calcareous samples treated with various combinations of these additives. Various parameters, including additive content, curing time, and freeze–thaw cycles, were thoroughly examined. The findings demonstrate a significant increase in UCS and shear strength parameters (c and ϕ) with the addition of PU foam, nanosilica, or their combination with fiber. Notably, the combination of PU and basalt fiber exhibits the most promising performance in improving the mechanical behavior and freeze–thaw durability of silica and calcareous sand, especially for short curing times. Additionally, calcareous samples consistently exhibit higher UCS, and shear strength compared to silica samples. Furthermore, the analysis of failure patterns and the microstructure of the samples using scanning electron microscopy provides insights into the effectiveness of these stabilizing agents and their influence on the mechanical properties of the soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data Availability

The data, models, and code utilized or generated during this study are available in the paper.

References

  1. Kakroudi HA, Bayat M, Nadi B (2024) Static and dynamic characteristics of silty sand treated with nano-silica and basalt fiber subjected to freeze–thaw cycles. Geomech Eng 37(1):085–095

    Google Scholar 

  2. Hakimelahi N, Bayat M, Ajalloeian R, Nadi B (2023) Effect of woven geotextile reinforcement on mechanical behavior of calcareous sands. Case Stud Constr Mater 18:e02014. https://doi.org/10.1016/j.cscm.2023.e02014

    Article  Google Scholar 

  3. Disfani MM, Mohammadinia A, Arulrajah A et al (2021) Lightly stabilized loose sands with alkali-activated fly ash in deep mixing applications. Int J Geomech 21:04021011. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001958

    Article  Google Scholar 

  4. Wang W, Luo J, Li N et al (2023) Mechanical properties and microscopic mechanism of cement-stabilized calcareous sand improved with a nano-MgO additive. Int J Geomech 23:06022040. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002644

    Article  Google Scholar 

  5. Moghal AAB, Rasheed RM, Mohammed SAS (2023) Sorptive and desorptive response of divalent heavy metal ions from EICP-treated plastic fines. Indian Geotech J 53:315–333. https://doi.org/10.1007/s40098-022-00638-8

    Article  Google Scholar 

  6. Salehi M, Bayat M, Saadat M, Nasri M (2021) Experimental study on mechanical properties of cement-stabilized soil blended with crushed stone waste. KSCE J Civ Eng 25:1974–1984. https://doi.org/10.1007/s12205-021-0953-5

    Article  Google Scholar 

  7. Hadi Sahlabadi S, Bayat M, Mousivand M, Saadat M (2021) Freeze–thaw durability of cement-stabilized soil reinforced with polypropylene/basalt fibers. J Mater Civ Eng 33:04021232. https://doi.org/10.1061/(asce)mt.1943-5533.0003905

    Article  Google Scholar 

  8. Al-Atroush ME, Sebaey TA (2021) Stabilization of expansive soil using hydrophobic polyurethane foam: a review. Transp Geotech 27:100494. https://doi.org/10.1016/j.trgeo.2020.100494

    Article  Google Scholar 

  9. Reddy AS, Iyer KKR, Dave TN (2024) Alkali activated soil stabilization as a sustainable pathway for the development of resilient geotechnical infrastructure. Indian Geotech J. https://doi.org/10.1007/s40098-024-00893-x

    Article  Google Scholar 

  10. Saadat M, Bayat M (2022) Prediction of the unconfined compressive strength of stabilised soil by adaptive neuro fuzzy inference system (ANFIS) and non-linear regression (NLR). Geomech Geoeng 17:80–91. https://doi.org/10.1080/17486025.2019.1699668

    Article  Google Scholar 

  11. Yang X, Wei J, Liang J et al (2023) Corrosion characteristics of cement-stabilized crushed stone under vibrational effects. J Mater Civ Eng 35:04023092. https://doi.org/10.1061/(ASCE)MT.1943-5533.0004733

    Article  Google Scholar 

  12. Yabaluie Khamesluei MR, Bayat M, Mousivand M, Nozari MA (2024) Effect of zeolite replacement and tyre fibre inclusions on geotechnical properties of cement- or lime-stabilised sand. Geomech Geoeng. https://doi.org/10.1080/17486025.2024.2326087

    Article  Google Scholar 

  13. Wang Z, Mei G (2012) Dynamic properties of rubber cement stabilized soil based on resonant column tests. Mar Georesour Geotechnol 30:333–346. https://doi.org/10.1080/1064119X.2011.631693

    Article  Google Scholar 

  14. Paul D, Azmain M (2022) Case study on applications of lime-cement grouting to strengthen soil characteristics. Indian Geotech J 52:181–204. https://doi.org/10.1007/s40098-021-00528-5

    Article  Google Scholar 

  15. Mohammed SAS, Sanaulla PF, Moghal AAB (2016) Sustainable use of locally available red earth and black cotton soils in retaining Cd2+ and Ni2+ from aqueous solutions. Int J Civ Eng 14:491–505. https://doi.org/10.1007/s40999-016-0052-z

    Article  Google Scholar 

  16. Alqaisi R, Le TM, Khabbaz H (2020) Applications of recycled sustainable materials and by-products in soil stabilization. In: Ameen H, Jamiolkowski M, Manassero M, Shehata H (eds) Recent thoughts in geoenvironmental engineering. Springer International Publishing, Cham, pp 91–117

    Chapter  Google Scholar 

  17. Moghal AAB, Reddy KR, Abu Sayeed Mohammed S et al (2017) Sorptive response of chromium (Cr+6) and mercury (Hg+2) from aqueous solutions using chemically modified soils. J Test Eval 45:105–119

    Article  Google Scholar 

  18. Moghal AAB, Vydehi KV (2021) State-of-the-art review on efficacy of xanthan gum and guar gum inclusion on the engineering behavior of soils. Innov Infrastruct Solut 6:108. https://doi.org/10.1007/s41062-021-00462-8

    Article  Google Scholar 

  19. Mariyam Rasheed R, Moghal A (2023) Compressibility and durability characteristics of protein-based biopolymer amended organic soil. J Mater Civ Eng. https://doi.org/10.1061/JMCEE7/MTENG-17285

    Article  Google Scholar 

  20. Xie J, Zhang J, Cao Z et al (2024) Feasibility of using building-related construction and demolition waste-derived geopolymer for subgrade soil stabilization. J Clean Prod 450:142001

    Article  Google Scholar 

  21. Wang S, Gao X, Ma W et al (2023) Experimental study on static and dynamic characteristics of geopolymer-stabilized coarse-grained soils. Acta Geotech 19:1–23

    Google Scholar 

  22. Roustaei M, Sabetraftar M, Taherabadi E, Bayat M (2023) Compressive and tensile strength of nano-clay stabilised soil subjected to repeated freeze–thaw cycles. Stud Geotech Mech 45:221–230. https://doi.org/10.2478/sgem-2023-0009

    Article  Google Scholar 

  23. Li B, Luo F, Li X, Liu J (2023) Mechanical properties evolution of clays treated with rice husk ash subjected to freezing-thawing cycles. Case Stud Constr Mater 230:e02712

    Google Scholar 

  24. Tian S, Wang K, Tang L et al (2023) Permanent deformation prediction model for freeze–thaw coarse–fine mixture of geomaterials with varying fine content: Influence of loading frequency. Cold Reg Sci Technol 216:104003

    Article  Google Scholar 

  25. Jiang P, Zhou X, Wang W et al (2024) Effect and mechanism of freeze–thaw cycles on static and dynamic characteristics of expandable polystyrene lightweight soil. Int J Geomech 24:04023271. https://doi.org/10.1061/IJGNAI.GMENG-8623

    Article  Google Scholar 

  26. Kumar A, Soni DK (2020) Strength and microstructural characterisation of plastic soil under freeze and thaw cycles. Indian Geotech J 50:359–371. https://doi.org/10.1007/s40098-019-00372-8

    Article  Google Scholar 

  27. Roustaei M (2021) Shear modulus and damping ratio of clay soil under repeated freeze–thaw cycles. Acta Geodyn Geomater. https://doi.org/10.13168/AGG.2021.0005

    Article  Google Scholar 

  28. Qi J, Ma W, Song C (2008) Influence of freeze–thaw on engineering properties of a silty soil. Cold Reg Sci Technol 53:397–404

    Article  Google Scholar 

  29. Orakoglu ME, Liu J (2017) Effect of freeze–thaw cycles on triaxial strength properties of fiber-reinforced clayey soil. KSCE J Civ Eng 21:2128–2140. https://doi.org/10.1007/s12205-017-0960-8

    Article  Google Scholar 

  30. Nguyen TTH, Cui Y-J, Ferber V et al (2019) Effect of freeze–thaw cycles on mechanical strength of lime-treated fine-grained soils. Transp Geotech 21:100281

    Article  Google Scholar 

  31. Deprez M, De Kock T, De Schutter G, Cnudde V (2020) A review on freeze–thaw action and weathering of rocks. Earth Sci Rev 203:103143

    Article  Google Scholar 

  32. Hou C, Jin X, He J, Li H (2022) Experimental studies on the pore structure and mechanical properties of anhydrite rock under freeze–thaw cycles. J Rock Mech Geotech Eng 14:781–797

    Article  Google Scholar 

  33. Wang L, Chou Y (2023) Experimental study on direct shear mechanical behavior of unsaturated loess-steel interface considering freeze–thaw cycles. Indian Geotech J 53:523–537. https://doi.org/10.1007/s40098-022-00684-2

    Article  Google Scholar 

  34. Tang C-S, Wang D-Y, Cui Y-J et al (2016) Tensile strength of fiber-reinforced soil. J Mater Civ Eng 28:04016031. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001546

    Article  Google Scholar 

  35. Eshaghzadeh M, Bayat M, Ajalloeian R, Hejazi SM (2021) Mechanical behavior of silty sand reinforced with nanosilica-coated ceramic fibers. J Adhes Sci Technol 35:2664–2683. https://doi.org/10.1080/01694243.2021.1898857

    Article  Google Scholar 

  36. Tavakol K, Bayat M, Nadi B, Ajalloeian R (2023) Combined influences of cement, rice husk ash and fibre on the mechanical characteristics of a calcareous sand. KSCE J Civ Eng. https://doi.org/10.1007/s12205-023-0695-7

    Article  Google Scholar 

  37. Razeghi HR, Rad AS (2024) Influence of fiber reinforcement on the ultrasonic P-wave velocity and unconfined compressive strength of cemented clay. Int J of Geosynth Ground Eng 10:7. https://doi.org/10.1007/s40891-023-00516-0

    Article  Google Scholar 

  38. Sujatha ER, Mahalakshmi S, Kannan G (2023) Potential of fibre reinforced and cement stabilized fibre reinforced soil blocks as sustainable building units. J Build Eng 78:107733. https://doi.org/10.1016/j.jobe.2023.107733

    Article  Google Scholar 

  39. Shen Y, Tang Y, Yin J et al (2021) An experimental investigation on strength characteristics of fiber-reinforced clayey soil treated with lime or cement. Constr Build Mater 294:123537

    Article  Google Scholar 

  40. Dhar S, Hussain M (2019) The strength behaviour of lime-stabilised plastic fibre-reinforced clayey soil. Road Mater Pavement Des 20:1757–1778. https://doi.org/10.1080/14680629.2018.1468803

    Article  Google Scholar 

  41. Syed M, GuhaRay A, Chukka SK, Ahmad S (2024) A laboratory investigation and numerical modeling on fiber reinforced lime and alkaline binder stabilized pavement subgrade soil. Case Stud Constr Mater 20:e03000

    Google Scholar 

  42. Davoodi A, Aboutalebi Esfahani M, Bayat M, Mohammadyan-Yasouj SE (2021) Evaluation of performance parameters of cement mortar in semi-flexible pavement using rubber powder and nano silica additives. Constr Build Mater 302:124166. https://doi.org/10.1016/j.conbuildmat.2021.124166

    Article  Google Scholar 

  43. Davoodi A, Aboutalebi Esfahani M, Bayat M et al (2022) Influence of nano-silica modified rubber mortar and EVA modified porous asphalt on the performance improvement of modified semi-flexible pavement. Constr Build Mater 337:127573. https://doi.org/10.1016/j.conbuildmat.2022.127573

    Article  Google Scholar 

  44. Boschi K, Di Prisco CG, Grassi D et al (2024) Nanosilica grout permeation in sand: experimental investigation and modeling. J Geotech Geoenviron Eng 150:04023129. https://doi.org/10.1061/JGGEFK.GTENG-11436

    Article  Google Scholar 

  45. Moghal AAB, Sanaulla PF, Mohammed SAS, Rasheed RM (2023) Leaching test protocols to evaluate contaminant response of nano-calcium silicate-treated tropical soils. J Hazard Toxic Radioact Waste 27:04023002. https://doi.org/10.1061/JHTRBP.HZENG-1200

    Article  Google Scholar 

  46. Mohammed SAS, Moghal AAB (2016) Efficacy of nano calcium silicate (NCS) treatment on tropical soils in encapsulating heavy metal ions: leaching studies validation. Innov Infrastruct Solut 1:21. https://doi.org/10.1007/s41062-016-0024-9

    Article  Google Scholar 

  47. Kotresha K, Mohammed SAS, Sanaulla PF et al (2021) Evaluation of sequential extraction procedure (SEP) to validate binding mechanisms in soils and soil-nano-calcium silicate (SNCS) mixtures. Indian Geotech J 51:1069–1077. https://doi.org/10.1007/s40098-020-00464-w

    Article  Google Scholar 

  48. Mohammed SAS, Moghal AAB, Sanaulla PF et al (2017) Cadmium fixation studies on contaminated soils using nano calcium silicate—treatment Strategy. In: Geotechnical frontiers 2017. American Society of Civil Engineers, Orlando, Florida, pp 434–442

  49. Lang L, Chen B, Li J (2023) High-efficiency stabilization of dredged sediment using nano-modified and chemical-activated binary cement. J Rock Mech Geotech Eng 15:2117–2131. https://doi.org/10.1016/j.jrmge.2022.12.007

    Article  Google Scholar 

  50. Seiphoori A, Zamanian M (2022) Improving mechanical behaviour of collapsible soils by grouting clay nanoparticles. Eng Geol 298:106538. https://doi.org/10.1016/j.enggeo.2022.106538

    Article  Google Scholar 

  51. Todaro C (2021) Grouting of cohesionless soils by means of colloidal nanosilica. Case Stud Constr Mater 15:e00577

    Google Scholar 

  52. Chaudhary V, Yadav JS, Dutta RK (2024) The impact of nano-silica and nano-silica-based compounds on strength, mineralogy and morphology of soil: a review. Indian Geotech J. https://doi.org/10.1007/s40098-024-00871-3

    Article  Google Scholar 

  53. Jafarian Barough M, Çelik S, Oltulu M (2022) Investigation into the effect of nanomaterial injection on improving the geotechnical properties of granular soils. Iran J Sci Technol Trans Civ Eng 46:3163–3179. https://doi.org/10.1007/s40996-021-00785-7

    Article  Google Scholar 

  54. Luo J, Zhou A, Li N et al (2022) Mechanical properties and microscopic characterization of cement stabilized calcareous sand modified by nano SiO2. Case Stud Constr Mater 17:e01636. https://doi.org/10.1016/j.cscm.2022.e01636

    Article  Google Scholar 

  55. Samimi A, Zarinabadi S (2012) Application solid polyurethane as coating in oil and gas pipelines. In: CHISA 2012—20th international congress of chemical and process engineering and PRES 2012—15th conference PRES 1

  56. Golpazir I, Ghalandarzadeh A, Jafari MK, Mahdavi M (2016) Dynamic properties of polyurethane foam-sand mixtures using cyclic triaxial tests. Constr Build Mater 118:104–115. https://doi.org/10.1016/j.conbuildmat.2016.05.035

    Article  Google Scholar 

  57. Huan Y, Shao YQ, Dai YJ et al (2016) Experimental study of the mechanical properties of a novel supramolecular polymer filament using a microtensile tester based on electronic balance. Exp Tech 40:737–742. https://doi.org/10.1007/s40799-016-0074-0

    Article  Google Scholar 

  58. Cetin D, Sengul T, Bhatia SK, Khachan MM (2017) Effect of polymer and fiber usage on dewatering and compressibility behavior of fly ash slurries. Mar Georesour Geotechnol 35:678–687. https://doi.org/10.1080/1064119X.2016.1217106

    Article  Google Scholar 

  59. Ni P, Mei G, Zhao Y (2017) Numerical investigation of the uplift performance of prestressed fiber-reinforced polymer floating piles. Mar Georesour Geotechnol 35:829–839. https://doi.org/10.1080/1064119X.2016.1255688

    Article  Google Scholar 

  60. Ud Din I, Hao P, Panier S et al (2020) Design of a new arcan fixture for in-plane pure shear and combined normal/shear stress characterization of fiber reinforced polymer composites. Exp Tech 44:231–240. https://doi.org/10.1007/s40799-019-00353-9

    Article  Google Scholar 

  61. Kumar J, Verma RK, Mondal AK (2021) Taguchi-grey theory based harmony search algorithm (GR-HSA) for predictive modeling and multi-objective optimization in drilling of polymer composites. Exp Tech 45:531–548. https://doi.org/10.1007/s40799-020-00428-y

    Article  Google Scholar 

  62. Cao X, Lee L, Widya T et al (2005) Polyurethane/clay nanocomposites foams: processing, structure and properties. Polymer 46:775–783

    Article  Google Scholar 

  63. Shokrieh MM, Saeedi A, Chitsazzadeh M (2013) Mechanical properties of multi-walled carbon nanotube/polyester nanocomposites. J Nanostructure Chem. https://doi.org/10.1186/2193-8865-3-20

    Article  Google Scholar 

  64. Espadas-Escalante JJ, Avilés F (2015) Anisotropic compressive properties of multiwall carbon nanotube/polyurethane foams. Mech Mater 91:167–176. https://doi.org/10.1016/j.mechmat.2015.07.006

    Article  Google Scholar 

  65. Zhou Z, Du X, Wang S (2018) Strength for modified polyurethane with modified sand. Geotech Geol Eng 36:1897–1906. https://doi.org/10.1007/s10706-017-0424-4

    Article  Google Scholar 

  66. Zhang Y, Qi Y, Zhang Z (2016) Synthesis of PPG-TDI-BDO polyurethane and the influence of hard segment content on its structure and antifouling properties. Prog Org Coat 97:115–121. https://doi.org/10.1016/j.porgcoat.2016.04.002

    Article  Google Scholar 

  67. Saleh S, Yunus NZM, Ahmad K, Ali N (2019) Improving the strength of weak soil using polyurethane grouts: a review. Constr Build Mater 202:738–752. https://doi.org/10.1016/j.conbuildmat.2019.01.048

    Article  Google Scholar 

  68. Yu L, Wang R, Skirrow R (2013) The application of polyurethane grout in roadway settlements issues. Canadian Geotechnical Conference 7

  69. Yang CG, Xu L, Chen N (2007) Thermal expansion of polyurethane foam at low temperature. Energy Convers Manage 48:481–485. https://doi.org/10.1016/j.enconman.2006.06.016

    Article  Google Scholar 

  70. Gundavaram D, Hussaini SKK (2020) Performance evaluation of polyurethane-stabilized railroad ballast under direct shear conditions. Constr Build Mater 255:119304. https://doi.org/10.1016/j.conbuildmat.2020.119304

    Article  Google Scholar 

  71. Gundavaram D, Hussaini SKK (2019) Polyurethane-based stabilization of railroad ballast—a critical review. Int J Rail Transp 7:219–240. https://doi.org/10.1080/23248378.2019.1570477

    Article  Google Scholar 

  72. Wei J, Kong F, Liu J et al (2018) Effect of sisal fiber and polyurethane admixture on the strength and mechanical behavior of sand. Polymers 10:1121. https://doi.org/10.3390/polym10101121

    Article  Google Scholar 

  73. Tao G, Yuan J, Chen Q et al (2021) Chemical stabilization of calcareous sand by polyurethane foam adhesive. Constr Build Mater 295:123609. https://doi.org/10.1016/j.conbuildmat.2021.123609

    Article  Google Scholar 

  74. Al-atroush ME, Shabbir O, Almeshari B et al (2021) A novel application of the hydrophobic polyurethane foam: expansive soil stabilization. Polymers. https://doi.org/10.3390/polym13081335

    Article  Google Scholar 

  75. Liu J, Shi B, Gu K et al (2012) Effect of polyurethane on the stability of sand-clay mixtures. Bull Eng Geol Env 71:537–544. https://doi.org/10.1007/s10064-012-0429-4

    Article  Google Scholar 

  76. Ma W, Gao W, Guo S et al (2020) Evaluation and improvement on the freeze–thaw durability performance of the polyurethane stabilized Pisha sandstone for water and soil conservation. Cold Reg Sci Technol 177:103065. https://doi.org/10.1016/j.coldregions.2020.103065

    Article  Google Scholar 

  77. Liu J, Chen Z, Zeng Z et al (2020) Influence of polyurethane polymer on the strength and mechanical behavior of sand-root composite. Fibers Polym 21:829–839. https://doi.org/10.1007/s12221-020-9331-z

    Article  Google Scholar 

  78. Zhang M, Guo H, El-Korchi T et al (2013) Experimental feasibility study of geopolymer as the next-generation soil stabilizer. Constr Build Mater 47:1468–1478. https://doi.org/10.1016/j.conbuildmat.2013.06.017

    Article  Google Scholar 

  79. Li F, Wang C, Xia Y et al (2020) Strength and solidification mechanism of silt solidified by polyurethane. Adv Civ Eng. https://doi.org/10.1155/2020/8824524

    Article  Google Scholar 

  80. Yang Z, Shuai B, Zhang X et al (2019) Fabrication and performance of a polyurethane hybrid composite with waste red mud. Polym Compos 40:2424–2431. https://doi.org/10.1002/pc.25107

    Article  Google Scholar 

  81. Said AM, Zeidan MS, Bassuoni MT, Tian Y (2012) Properties of concrete incorporating nano-silica. Constr Build Mater 36:838–844

    Article  Google Scholar 

  82. Kamble M, Lakhnot AS, Bartolucci SF et al (2020) Improvement in fatigue life of carbon fibre reinforced polymer composites via a nano-silica modified matrix. Carbon 170:220–224

    Article  Google Scholar 

  83. Yang H, Monasterio M, Zheng D et al (2021) Effects of nano silica on the properties of cement-based materials: a comprehensive review. Constr Build Mater 282:122715

    Article  Google Scholar 

  84. Majeed ZH, Taha MR (2013) A review of stabilization of soils by using nanomaterials. Aust J Basic Appl Sci 7:576–581

    Google Scholar 

  85. Huang Y, Wang L (2016) Experimental studies on nanomaterials for soil improvement: a review. Environ Earth Sci 75:497. https://doi.org/10.1007/s12665-015-5118-8

    Article  Google Scholar 

  86. Kulanthaivel P, Selvakumar S, Soundara B et al (2022) Combined effect of nano-silica and randomly distributed fibers on the strength behavior of clay soil. Nanotechnol Environ Eng 7:23–34. https://doi.org/10.1007/s41204-021-00176-3

    Article  Google Scholar 

  87. Tomar A, Sharma T, Singh S (2020) Strength properties and durability of clay soil treated with mixture of nano silica and polypropylene fiber. Mater Today Proc 26:3449–3457. https://doi.org/10.1016/j.matpr.2019.12.239

    Article  Google Scholar 

  88. Ghasemi M, Bayat M, Ghasemi M (2023) Experimental study on mechanical behavior of sand improved by polyurethane foam. Exp Tech. https://doi.org/10.1007/s40799-023-00633-5

    Article  Google Scholar 

  89. Abdelnaeem MM, Hassona F (2023) Characterization of polyurethane foam conditioned sand. J Adv Eng Trends 42:199–218

    Article  Google Scholar 

  90. Chen Q, Yu R, Tao G et al (2021) Shear behavior of polyurethane foam adhesive improved calcareous sand under large-scale triaxial test. Mar Georesour Geotechnol 39:1449–1458. https://doi.org/10.1080/1064119X.2020.1849473

    Article  Google Scholar 

  91. Liu J, Chen Z, Song Z et al (2018) Tensile behavior of polyurethane organic polymer and polypropylene fiber-reinforced sand. Polymers 10:499

    Article  Google Scholar 

  92. Liu J, Wang Y, Kanungo DP et al (2019) Study on the brittleness characteristics of sand reinforced with polypropylene fiber and polyurethane organic polymer. Fibers Polym 20:620–632. https://doi.org/10.1007/s12221-019-8779-1

    Article  Google Scholar 

  93. Kumar A, Adithya H, Amith K et al (2021) Experimental investigation on the effect of polyurethane foam on black cotton soil. In: Narasimhan MC, George V, Udayakumar G, Kumar A (eds) Trends in civil engineering and challenges for sustainability. Springer Singapore, Singapore, pp 421–432

    Chapter  Google Scholar 

  94. Roshan K, Choobbasti AJ, Kutanaei SS, Fakhrabadi A (2022) The effect of adding polypropylene fibers on the freeze–thaw cycle durability of lignosulfonate stabilised clayey sand. Cold Reg Sci Technol 193:103418

    Article  Google Scholar 

  95. Zhang Y, Johnson AE, White DJ (2016) Laboratory freeze–thaw assessment of cement, fly ash, and fiber stabilized pavement foundation materials. Cold Reg Sci Technol 122:50–57

    Article  Google Scholar 

  96. Hoang T, Do H, Alleman J et al (2023) Comparative evaluation of freeze and thaw effect on strength of BEICP-stabilized silty sands and cement-and fly ash-stabilized soils. Acta Geotech 18:1073–1092. https://doi.org/10.1007/s11440-022-01612-7

    Article  Google Scholar 

  97. Ghanbari M, Bayat M (2022) Effectiveness of reusing steel slag powder and polypropylene fiber on the enhanced mechanical behavior of cement-stabilized sand. Civ Eng Infrastruct J. https://doi.org/10.22059/ceij.2021.319310.1742

    Article  Google Scholar 

  98. ShahriarKian M, Kabiri S, Bayat M (2021) Utilization of zeolite to improve the behavior of cement-stabilized soil. Int J of Geosynth Ground Eng 7:35. https://doi.org/10.1007/s40891-021-00284-9

    Article  Google Scholar 

  99. Qiu CC, Xu GZ, Gu GQ et al (2024) Uniaxial compression test of cement-solidified dredged slurry columns encased with geogrid. Geosynth Int. https://doi.org/10.1680/jgein.23.00132

    Article  Google Scholar 

  100. Roustaei M, Pumple J, Hendry MT et al (2024) Effect of freeze–thaw cycles on the macrostructure and failure mechanisms of fiber-reinforced clay using industrial computed tomography. Can Geotech J CGJ. https://doi.org/10.1139/cgj-2023-0136

    Article  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meysam Bayat.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the author(s).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahidi, S., Bayat, M. & Zareei, S.A. Enhancing Mechanical Behavior of Silica and Calcareous Sand through Polyurethane Foam, Nanomaterial, and Fiber. Indian Geotech J (2024). https://doi.org/10.1007/s40098-024-00971-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40098-024-00971-0

Keywords

Navigation