Skip to main content
Log in

Efficacy of Coal Gangue as a Precursor in Synthesis of Geopolymer

  • State of the Art/Practice Paper
  • Published:
Indian Geotechnical Journal Aims and scope Submit manuscript

Abstract

Geopolymers are three-dimensional aluminosilicate binder materials developed from various raw materials such as industrial by-products that are rich in reactive silica and alumina. However, a few raw materials that are generated in large quantities such as coal gangue (CG) are observed to be under-utilized due to various factors such as low reactivity and bare understanding of the chemical composition. In order to comprehensively utilize CG as an effective binder for various civil engineering applications, improving its cementitious activity is of primary importance. In this study, the potential to synthesize geopolymer from CG is explored by understanding the geopolymer philosophy and criticality of different treatment methods adopted for generation of geopolymer. From various studies, it is understood that the mechanical properties of geopolymer synthesized are affected by particle size, type of activator, pre-treatment methods, and synthesis conditions. Further, reactivity tests were conducted on uncalcinated and calcinated CG at different temperatures to evaluate efficient proportions for geopolymerization. The results conclude that thermal activation improves the amorphic nature and reactivity of CG. It is further inferred that thermally treated CG-based geopolymer is employed as an effective pozzolanic material in various civil engineering applications for its high degree of reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gartner E (2004) Industrially interesting approaches to “low-CO2” cements. Cem Concr Res 34(9):1489–1498. https://doi.org/10.1016/j.cemconres.2004.01.021

    Article  Google Scholar 

  2. McLellan BC, Williams RP, Lay J, Van Riessen A, Corder GD (2011) Costs and carbon emissions for geopolymer pastes in comparison to ordinary portland cement. J Clean Prod 19(9–10):1080–1090. https://doi.org/10.1016/j.jclepro.2011.02.010

    Article  Google Scholar 

  3. Moghadam MJ, Ajalloeian R, Hajiannia A (2019) Preparation and application of alkali-activated materials based on waste glass and coal gangue: a review. Constr Build Mater 221:84–98. https://doi.org/10.1016/j.conbuildmat.2019.06.071

    Article  Google Scholar 

  4. Mabroum S, Moukannaa S, El Machi A, Taha Y, Benzaazoua M, Hakkou R (2020) Mine wastes based geopolymers: a critical review. Clean Eng Technol 1:100014. https://doi.org/10.1016/j.clet.2020.100014

    Article  Google Scholar 

  5. Huang G, Ji Y, Li J, Hou Z, Dong Z (2018) Improving strength of calcinated coal gangue geopolymer mortars via increasing calcium content. Constr Build Mater 166:760–768. https://doi.org/10.1016/j.conbuildmat.2018.02.005

    Article  Google Scholar 

  6. Cheng Y, Hongqiang M, Hongyu C, Jiaxin W, Jing S, Zonghui L, Mingkai Y (2018) Preparation and characterization of coal gangue geopolymers. Constr Build Mater 187:318–326. https://doi.org/10.1016/j.conbuildmat.2018.07.220

    Article  Google Scholar 

  7. Li J, Wang J (2019) Comprehensive utilization and environmental risks of coal gangue: a review. J Clean Prod 239:117946. https://doi.org/10.1016/j.jclepro.2019.117946

    Article  Google Scholar 

  8. Ma H, Zhu H, Yi C, Fan J, Chen H, Xu X, Wang T (2019) Preparation and reaction mechanism characterization of alkali-activated coal gangue–slag materials. Materials 12(14):2250. https://doi.org/10.3390/ma12142250

    Article  Google Scholar 

  9. Lumbroso D, McElroy C, Goff C, Collell MR, Petkovsek G, Wetton M (2019) The potential to reduce the risks posed by tailings dams using satellite-based information. Int J Disaster Risk Reduct 38:101209. https://doi.org/10.1016/j.ijdrr.2019.101209

    Article  Google Scholar 

  10. Tian X, Zhang H, Zhang T, Fernández CA (2020) Alkali-activated copper tailings-based pastes: compressive strength and microstructural characterization. J Mater Res Technol 9(3):6557–6567. https://doi.org/10.1016/j.jmrt.2020.04.043

    Article  Google Scholar 

  11. Yang C, Cui C, Qin J, Cui X (2014) Characteristics of the fired bricks with low-silicon iron tailings. Constr Build Mater 70:36–42. https://doi.org/10.1016/j.conbuildmat.2014.07.075

    Article  Google Scholar 

  12. Kastiukas G, Zhou X, Castro-Gomes J (2017) Preparation conditions for the synthesis of alkali-activated binders using tungsten mining waste. J Mater Civ Eng 29(10):04017181. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002029

    Article  Google Scholar 

  13. Van Jaarsveld JGS, Van Deventer JSJ, Lorenzen L (1997) The potential use of geopolymeric materials to immobilise toxic metals: Part I theory and applications. Miner Eng 10(7):659–669. https://doi.org/10.1016/S0892-6875(97)00046-0

    Article  Google Scholar 

  14. Geng J, Zhou M, Zhang T, Wang W, Wang T, Zhou X, Wang X, Hou H (2017) Preparation of blended geopolymer from red mud and coal gangue with mechanical co-grinding preactivation. Mater Struct 50:1–11. https://doi.org/10.1617/s11527-016-0967-5

    Article  Google Scholar 

  15. Obenaus-Emler R, Illikainen M, Falah M, Kinnunen P, Heiskanen K (2019) Geopolymers from mining tailings for more sustainable raw material supply. In: MATEC web of conferences, vol 274. EDP Sciences, p 05001 https://doi.org/10.1051/matecconf/201927405001

  16. Provis JL (2018) Alkali-activated materials. Cem Concr Res 114:40–48. https://doi.org/10.1016/j.cemconres.2017.02.009

    Article  Google Scholar 

  17. Duxson P, Fernandez-Jimenez A, Provis JL, Lukey GC, Palomo A, van Deventer JS (2007) Geopolymer technology: the current state of the art. J Mater Sci 42:2917–2933. https://doi.org/10.1007/s10853-006-0637-z

    Article  Google Scholar 

  18. Matalkah F, Xu L, Wu W, Soroushian P (2017) Mechanochemical synthesis of one-part alkali aluminosilicate hydraulic cement. Mater Struct 50:1–12. https://doi.org/10.1617/s11527-016-0968-4

    Article  Google Scholar 

  19. Luukkonen T, Abdollahnejad Z, Yliniemi J, Kinnunen P, Illikainen M (2018) One-part alkali-activated materials: a review. Cem Concr Res 103:21–34. https://doi.org/10.1016/j.cemconres.2017.10.001

    Article  Google Scholar 

  20. Pacheco-Torgal F, Castro-Gomes J, Jalali S (2008) Alkali-activated binders: a review. Part 2. About materials and binders manufacture. Constr Build Mater 22(7):1315–1322. https://doi.org/10.1016/j.conbuildmat.2007.03.019

    Article  Google Scholar 

  21. Ding Y, Dai JG, Shi CJ (2016) Mechanical properties of alkali-activated concrete: a state-of-the-art review. Constr Build Mater 127:68–79. https://doi.org/10.1016/j.conbuildmat.2016.09.121

    Article  Google Scholar 

  22. Deir E, Gebregziabiher BS, Peethamparan S (2014) Influence of starting material on the early age hydration kinetics, microstructure and composition of binding gel in alkali activated binder systems. Cem Concr Compos 48:108–117. https://doi.org/10.1016/j.cemconcomp.2013.11.010

    Article  Google Scholar 

  23. Gaddam AG, Varudu RM, Yamsani SK (2022) Fly ash and GGBS based geopolymer as alternate binder for treating soft soils. In: National conference on advances in construction materials and management. Springer, Singapore, pp 515–522

  24. Gruskovnjak A, Lothenbach B, Holzer L, Figi R, Winnefeld F (2006) Hydration of alkali-activated slag: comparison with ordinary Portland cement. Adv Cem Res 18(3):119–128. https://doi.org/10.1680/adcr.2006.18.3.119

    Article  Google Scholar 

  25. Ravikumar D, Neithalath N (2012) Effects of activator characteristics on the reaction product formation in slag binders activated using alkali silicate powder and NaOH. Cem Concr Compos 34(7):809–818. https://doi.org/10.1016/j.cemconcomp.2012.03.006

    Article  Google Scholar 

  26. Geraldo RH, Fernandes LF, Camarini G (2017) Water treatment sludge and rice husk ash to sustainable geopolymer production. J Clean Prod 149:146–155. https://doi.org/10.1016/j.jclepro.2017.02.076

    Article  Google Scholar 

  27. Sturm P, Gluth GJG, Brouwers HJH, Kuhne HC (2016) Synthesizing one-part geopolymers from rice husk ash. Constr Build Mater 124:961–966. https://doi.org/10.1016/j.conbuildmat.2016.08.017

    Article  Google Scholar 

  28. Nimwinya E, Arjharn W, Horpibulsuk S, Phoo-Ngernkham T, Poowancum A (2016) A sustainable calcined water treatment sludge and rice husk ash geopolymer. J Clean Prod 119:128–134. https://doi.org/10.1016/j.jclepro.2016.01.060

    Article  Google Scholar 

  29. Santos GZ, Melo Filho JA, Pinheiro M, Manzato L (2019) Synthesis of water treatment sludge ash-based geopolymers in an Amazonian context. J Environ Manage 249:109328. https://doi.org/10.1016/j.jenvman.2019.109328

    Article  Google Scholar 

  30. Ahmari S, Zhang L (2012) Production of eco-friendly bricks from copper mine tailings through geopolymerization. Constr Build Mater 29:323–331. https://doi.org/10.1016/j.conbuildmat.2011.10.048

    Article  Google Scholar 

  31. Cheng Y, Huang F, Li W, Liu R, Li G, Wei J (2016) Test research on the effects of mechanochemically activated iron tailings on the compressive strength of concrete. Constr Build Mater 118:164–170. https://doi.org/10.1016/j.conbuildmat.2016.05.020

    Article  Google Scholar 

  32. Duan P, Yan C, Zhou W, Ren D (2016) Fresh properties, compressive strength and microstructure of fly ash geopolymer paste blended with iron ore tailing under thermal cycle. Constr Build Mater 118:76–88. https://doi.org/10.1016/j.conbuildmat.2016.05.059

    Article  Google Scholar 

  33. Kinnunen P, Yliniemi J, Talling B, Illikainen M (2017) Rockwool waste in fly ash geopolymer composites. J Mater Cycles Waste Manag 19:1220–1227. https://doi.org/10.1007/s10163-016-0514-z

    Article  Google Scholar 

  34. Ndjock BDL, Elimbi A, Cyr M (2017) Rational utilization of volcanic ashes based on factors affecting their alkaline activation. J Non Cryst 463:31–39. https://doi.org/10.1016/j.jnoncrysol.2017.02.024

    Article  Google Scholar 

  35. Kouamo HT, Mbey JA, Elimbi A, Diffo BK, Njopwouo D (2013) Synthesis of volcanic ash-based geopolymer mortars by fusion method: effects of adding metakaolin to fused volcanic ash. Ceram Int 39(2):1613–1621. https://doi.org/10.1016/j.ceramint.2012.08.003

    Article  Google Scholar 

  36. Sun T, Chen J, Lei X, Zhou C (2014) Detoxification and immobilization of chromite ore processing residue with metakaolin-based geopolymer. J Environ Chem Eng 2(1):304–309. https://doi.org/10.1016/j.jece.2013.12.022

    Article  Google Scholar 

  37. Redden R, Neithalath N (2014) Microstructure, strength, and moisture stability of alkali activated glass powder-based binders. Cem Concr Compos 45:46–56. https://doi.org/10.1016/j.cemconcomp.2013.09.011

    Article  Google Scholar 

  38. Wang WC, Chen BT, Wang HY, Chou HC (2016) A study of the engineering properties of alkali-activated waste glass material (AAWGM). Constr Build Mater 112:962–969. https://doi.org/10.1016/j.conbuildmat.2016.03.022

    Article  Google Scholar 

  39. Torres-Carrasco M, Puertas FJJOCP (2015) Waste glass in the geopolymer preparation. Mechanical and microstructural characterisation. J Clean Prod 90:397–408. https://doi.org/10.1016/j.jclepro.2014.11.074

    Article  Google Scholar 

  40. Zhang M, Zhao M, Zhang G, Sietins JM, Granados-Focil S, Pepi MS, Xu Y, Tao M (2018) Reaction kinetics of red mud-fly ash based geopolymers: effects of curing temperature on chemical bonding, porosity, and mechanical strength. Cem Concr Compos 93:175–185. https://doi.org/10.1016/j.cemconcomp.2018.07.008

    Article  Google Scholar 

  41. Ye N, Yang J, Liang S, Hu Y, Hu J, Xiao B, Huang Q (2016) Synthesis and strength optimization of one-part geopolymer based on red mud. Constr Build Mater 111:317–325. https://doi.org/10.1016/j.conbuildmat.2016.02.099

    Article  Google Scholar 

  42. Bouzon NOELIA, Paya JORDI, Borrachero MV, Soriano L, Tashima MM, Monzo J (2014) Refluxed rice husk ash/NaOH suspension for preparing alkali activated binders. Mater Lett 115:72–74. https://doi.org/10.1016/j.matlet.2013.10.001

    Article  Google Scholar 

  43. Jiao X, Zhang Y, Chen T (2013) Thermal stability of a silica-rich vanadium tailing based geopolymer. Constr Build Mater 38:43–47. https://doi.org/10.1016/j.conbuildmat.2012.06.076

    Article  Google Scholar 

  44. Vasquez A, Cardenas V, Robayo RA, de Gutierrez RM (2016) Geopolymer based on concrete demolition waste. Adv Powder Techno 27(4):1173–1179. https://doi.org/10.1016/j.apt.2016.03.029

    Article  Google Scholar 

  45. De Rossi A, Ribeiro MJ, Labrincha JA, Novais RM, Hotza D, Moreira RFPM (2019) Effect of the particle size range of construction and demolition waste on the fresh and hardened-state properties of fly ash-based geopolymer mortars with total replacement of sand. Process Saf Environ Prot 129:130–137. https://doi.org/10.1016/j.psep.2019.06.026

    Article  Google Scholar 

  46. Singhi B, Laskar AI, Ahmed MA (2016) Investigation on soil–geopolymer with slag, fly ash and their blending. Arab J Sci Eng 41:393–400. https://doi.org/10.1007/s13369-015-1677-y

    Article  Google Scholar 

  47. Deb PS, Nath P, Sarker PK (2014) The effects of ground granulated blast-furnace slag blending with fly ash and activator content on the workability and strength properties of geopolymer concrete cured at ambient temperature. Mater Des (1980–2015) 62:32–39. https://doi.org/10.1016/j.matdes.2014.05.001

    Article  Google Scholar 

  48. Jin F, Gu K, Abdollahzadeh A, Al-Tabbaa A (2015) Effects of different reactive MgO on the hydration of MgO-activated GGBS paste. J Mater Civ Eng 27(7):B4014001. https://doi.org/10.1061/(ASCE)MT

    Article  Google Scholar 

  49. Kuranchie FA, Shukla SK, Habibi D (2016) Utilisation of iron ore mine tailings for the production of geopolymer bricks. Int J Min Reclam Environ 30(2):92–114. https://doi.org/10.1080/17480930.2014.993834

    Article  Google Scholar 

  50. Tang C, Li K, Ni W, Fan D (2019) Recovering iron from iron ore tailings and preparing concrete composite admixtures. Minerals 9(4):232. https://doi.org/10.3390/min9040232

    Article  Google Scholar 

  51. Li Z, Gao Y, Zhang J, Zhang C, Chen J, Liu C (2021) Effect of particle size and thermal activation on the coal gangue based geopolymer. Mater Chem Phys 267:124657. https://doi.org/10.1016/j.matchemphys.2021.124657

    Article  Google Scholar 

  52. Wang A, Liu H, Hao X, Wang Y, Liu X, Li Z (2019) Geopolymer synthesis using garnet tailings from molybdenum mines. Minerals 9(1):48. https://doi.org/10.3390/min9010048

    Article  Google Scholar 

  53. Kastiukas G, Zhou XM (2018) Alkali-activated binder from tungsten mining waste and waste glass. Key Eng Mater 788:45–50. https://doi.org/10.4028/www.scientific.net/KEM.788.45

    Article  Google Scholar 

  54. Kiventera J, Yliniemi J, Golek L, Deja J, Ferreira V, Illikainen M (2019) Utilization of sulphidic mine tailings in alkali-activated materials. In: MATEC web of Conferences, vol 274. EDP Sciences, p 01001. https://doi.org/10.1051/matecconf/201927401001

  55. Longos A Jr, Tigue AA, Dollente IJ, Malenab RA, Bernardo-Arugay I, Hinode H, Kurniawan W, Promentilla MA (2020) Optimization of the mix formulation of geopolymer using nickel-laterite mine waste and coal fly ash. Minerals 10(12):1144. https://doi.org/10.3390/min10121144

    Article  Google Scholar 

  56. Moukannaa S, Loutou M, Benzaazoua M, Vitola L, Alami J, Hakkou R (2018) Recycling of phosphate mine tailings for the production of geopolymers. J Clean Prod 185:891–903. https://doi.org/10.1016/j.jclepro.2018.03.094

    Article  Google Scholar 

  57. Wongsa A, Boonserm K, Waisurasingha C, Sata V, Chindaprasirt P (2017) Use of municipal solid waste incinerator (MSWI) bottom ash in high calcium fly ash geopolymer matrix. J Clean Prod 148:49–59. https://doi.org/10.1016/j.jclepro.2017.01.147

    Article  Google Scholar 

  58. Sukmak P, Sukmak G, Horpibulsuk S, Setkit M, Kassawat S, Arulrajah A (2019) Palm oil fuel ash-soft soil geopolymer for subgrade applications: strength and microstructural evaluation. Road Mater Pavement Des 20(1):110–131. https://doi.org/10.1080/14680629.2017.1375967

    Article  Google Scholar 

  59. Kua TA, Imteaz MA, Arulrajah A, Horpibulsuk S (2019) Environmental and economic viability of alkali activated material (AAM) comprising slag, fly ash and spent coffee ground. Int J Sustain Eng 12(4):223–232. https://doi.org/10.1080/19397038.2018.1492043

    Article  Google Scholar 

  60. Adesanya E, Ohenoja K, Luukkonen T, Kinnunen P, Illikainen M (2018) One-part geopolymer cement from slag and pretreated paper sludge. J Clean Prod 185:168–175. https://doi.org/10.1016/j.jclepro.2018.03.007

    Article  Google Scholar 

  61. Rodriguez ED, Bernal SA, Provis JL, Gehman JD, Monzo JM, Paya J, Borrachero MV (2013) Geopolymers based on spent catalyst residue from a fluid catalytic cracking (FCC) process. Fuel 109:493–502. https://doi.org/10.1016/j.fuel.2013.02.053

    Article  Google Scholar 

  62. Reig L, Tashima MM, Soriano L, Borrachero MV, Monzo J, Paya J (2013) Alkaline activation of ceramic waste materials. Waste Biomass Valoriz 4:729–736. https://doi.org/10.1007/s12649-013-9197-z

    Article  Google Scholar 

  63. Cristelo N, Fernandez-Jimenez A, Vieira C, Miranda T, Palomo A (2018) Stabilisation of construction and demolition waste with a high fines content using alkali activated fly ash. Constr Build Mater 170:26–39. https://doi.org/10.1016/j.conbuildmat.2018.03.057

    Article  Google Scholar 

  64. Komnitsas K, Zaharaki D, Vlachou A, Bartzas G, Galetakis M (2015) Effect of synthesis parameters on the quality of construction and demolition wastes (CDW) geopolymers. Adv Powder Technol 26(2):368–376. https://doi.org/10.1016/j.apt.2014.11.012

    Article  Google Scholar 

  65. Aravind G, Yamsani SK (2023) Performance evaluation of coal gangue-ggbs based geopolymer for treating black-cotton soil. Geotech Test J 47(1):19

    Google Scholar 

  66. Chi M, Huang R (2013) Binding mechanism and properties of alkali-activated fly ash/slag mortars. Constr Build Mater 40:291–298. https://doi.org/10.1016/j.conbuildmat.2012.11.003

    Article  Google Scholar 

  67. Murmu AL, Patel A (2020) Studies on the properties of fly ash–rice husk ash-based geopolymer for use in black cotton soils. Int J Geosynth Ground Eng 6:1–14. https://doi.org/10.1007/s40891-020-00224-z

    Article  Google Scholar 

  68. Zhang N, Sun H, Liu X, Zhang J (2009) Early-age characteristics of red mud–coal gangue cementitious material. J Hazard Mater 167(1–3):927–932. https://doi.org/10.1016/j.jhazmat.2009.01.086

    Article  Google Scholar 

  69. Koshy N, Dondrob K, Hu L, Wen Q, Meegoda JN (2019) Synthesis and characterization of geopolymers derived from coal gangue, fly ash and red mud. Constr Build Mater 206:287–296. https://doi.org/10.1016/j.conbuildmat.2019.02.076

    Article  Google Scholar 

  70. Geng J, Zhou M, Li Y, Chen Y, Han Y, Wan S, Zhou X, Hou H (2017) Comparison of red mud and coal gangue blended geopolymers synthesized through thermal activation and mechanical grinding preactivation. Constr Build Mater 153:185–192. https://doi.org/10.1016/j.conbuildmat.2017.07.045

    Article  Google Scholar 

  71. Bai T, Song Z, Wang H, Wu Y, Huang W (2019) Performance evaluation of metakaolin geopolymer modified by different solid wastes. J Clean Prod 226:114–121. https://doi.org/10.1016/j.jclepro.2019.04.093

    Article  Google Scholar 

  72. He J, Zhang J, Yu Y, Zhang G (2012) The strength and microstructure of two geopolymers derived from metakaolin and red mud-fly ash admixture: a comparative study. Constr Build Mater 30:80–91. https://doi.org/10.1016/j.conbuildmat.2011.12.011

    Article  Google Scholar 

  73. Komnitsas K, Zaharaki D (2007) Geopolymerisation: a review and prospects for the minerals industry. Miner Eng 20(14):1261–1277. https://doi.org/10.1016/j.mineng.2007.07.011

    Article  Google Scholar 

  74. Haha MB, Lothenbach B, Le Saout G, Winnefeld F (2012) Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag-Part II: effect of Al2O3. Cem Concr Res 42(1):74–83. https://doi.org/10.1016/j.cemconres.2011.08.005

    Article  Google Scholar 

  75. Fernandez-Jimenez A, Puertas F, Sobrados I, Sanz J (2003) Structure of calcium silicate hydrates formed in alkaline-activated slag: influence of the type of alkaline activator. J Am Ceram Soc 86(8):1389–1394. https://doi.org/10.1111/j.1151-2916.2003.tb03481.x

    Article  Google Scholar 

  76. Aydın S, Baradan B (2014) Effect of activator type and content on properties of alkali-activated slag mortars. Compos B Eng 57:166–172. https://doi.org/10.1016/j.compositesb.2013.10.001

    Article  Google Scholar 

  77. Yang KH, Cho AR, Song JK, Nam SH (2012) Hydration products and strength development of calcium hydroxide-based alkali-activated slag mortars. Constr Build Mater 29:410–419. https://doi.org/10.1016/j.conbuildmat.2011.10.063

    Article  Google Scholar 

  78. Abdalqader AF, Jin F, Al-Tabbaa A (2016) Development of greener alkali-activated cement: utilisation of sodium carbonate for activating slag and fly ash mixtures. J Clean Prod 113:66–75. https://doi.org/10.1016/j.jclepro.2015.12.010

    Article  Google Scholar 

  79. Kim MS, Jun Y, Lee C, Oh JE (2013) Use of CaO as an activator for producing a price-competitive non-cement structural binder using ground granulated blast furnace slag. Cem Concr Res 54:208–214. https://doi.org/10.1016/j.cemconres.2013.09.011

    Article  Google Scholar 

  80. Jin F, Al-Tabbaa A (2014) Strength and hydration products of reactive MgO–silica pastes. Cem Concr Compos 52:27–33. https://doi.org/10.1016/j.cemconcomp.2014.04.003

    Article  Google Scholar 

  81. Heah CY, Kamarudin H, Al Bakri AM, Bnhussain M, Luqman M, Nizar IK, Ruzaidi CM, Liew YM (2012) Study on solids-to-liquid and alkaline activator ratios on kaolin-based geopolymers. Constr Build Mater 35:912–922. https://doi.org/10.1016/j.conbuildmat.2012.04.102

    Article  Google Scholar 

  82. Liu Z, Cai CS, Liu F, Fan F (2016) Feasibility study of loess stabilization with fly ash–based geopolymer. J Mater Civ Eng 28(5):04016003. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001490

    Article  Google Scholar 

  83. Dungca JR, Codilla EET II (2018) Fly-ash-based geopolymer as stabilizer for silty sand embankment materials. Int J GEOMATE 14(46):143–149. https://doi.org/10.21660/2018.46.7181

    Article  Google Scholar 

  84. Parhi PS, Garanayak L, Mahamaya M, Das SK (2018) Stabilization of an expansive soil using alkali activated fly ash based geopolymer. In: Advances in characterization and analysis of expansive soils and rocks: Proceedings of the 1st GeoMEast international congress and exhibition, Egypt 2017 on sustainable civil infrastructures 1. Springer, pp 36–50, https://doi.org/10.1007/978-3-319-61931-6_4

  85. Murmu AL, Dhole N, Patel A (2020) Stabilisation of black cotton soil for subgrade application using fly ash geopolymer. Road Mater Pavement Des 21(3):867–885. https://doi.org/10.1080/14680629.2018.1530131

    Article  Google Scholar 

  86. Dungca JR, Lao WDT, Lim M, Lu WD, Redelicia JCP (2019) Vertical permeability of dredged soil stabilized with fly-ash based geopolymer for road embankment. Int J GEOMATE 17(59):8–14. https://doi.org/10.21660/2019.59.4525

    Article  Google Scholar 

  87. Murmu AL, Jain A, Patel A (2019) Mechanical properties of alkali activated fly ash geopolymer stabilized expansive clay. KSCE J Civ Eng 23:3875–3888. https://doi.org/10.1007/s12205-019-2251-z

    Article  Google Scholar 

  88. Syed M, GuhaRay A, Kar A (2020) Stabilization of expansive clayey soil with alkali activated binders. Geotech Geol Eng 38(6):6657–6677. https://doi.org/10.1007/s10706-020-01461-9

    Article  Google Scholar 

  89. Zhang Y, Ling TC (2020) Reactivity activation of waste coal gangue and its impact on the properties of cement-based materials–A review. Constr Build Mater 234:117424. https://doi.org/10.1016/j.conbuildmat.2019.117424

    Article  Google Scholar 

  90. Amulya S, Ravi Shankar AU, Praveen M (2020) Stabilisation of lithomargic clay using alkali activated fly ash and ground granulated blast furnace slag. Int J Pavement Eng 21(9):1114–1121. https://doi.org/10.1080/10298436.2018.1521520

    Article  Google Scholar 

  91. Salih MA, Farzadnia N, Ali AAA, Demirboga R (2015) Development of high strength alkali activated binder using palm oil fuel ash and GGBS at ambient temperature. Constr Build Mater 93:289–300. https://doi.org/10.1016/j.conbuildmat.2015.05.119

    Article  Google Scholar 

  92. Jiang NJ, Du YJ, Liu K (2018) Durability of lightweight alkali-activated ground granulated blast furnace slag (GGBS) stabilized clayey soils subjected to sulfate attack. Appl Clay Sci 161:70–75. https://doi.org/10.1016/j.clay.2018.04.014

    Article  Google Scholar 

  93. Ulugol H, Kul A, Yıldırım G, Şahmaran M, Aldemir A, Figueira D, Ashour A (2021) Mechanical and microstructural characterization of geopolymers from assorted construction and demolition waste-based masonry and glass. J Clean Prod 280:124358. https://doi.org/10.1016/j.jclepro.2020.124358

    Article  Google Scholar 

  94. Gaddam AG, Gondu VR, Yamsani SK, Adigopula VK (2023) Comprehensive utilization of brick waste as a precursor in synthesizing geopolymer for treating black cotton soil. Int J Geotech Eng. https://doi.org/10.1080/19386362.2023.2245230

    Article  Google Scholar 

  95. Panizza M, Natali M, Garbin E, Ducman V, Tamburini S (2020) Optimization and mechanical-physical characterization of geopolymers with construction and demolition waste (CDW) aggregates for construction products. Constr Build Mater 264:120158. https://doi.org/10.1016/j.conbuildmat.2020.120158

    Article  Google Scholar 

  96. Zhou S, Li J, Rong L, Xiao J, Liu Y, Duan Y, Chu L, Li Q, Yang L (2021) Immobilization of uranium soils with alkali-activated coal gangue–based geopolymer. J Radioanal Nucl Chem 329:1155–1166. https://doi.org/10.1007/s10967-021-07812-x

    Article  Google Scholar 

  97. Zhang D, Sun F, Liu T (2021) Study on preparation of coal gangue-based geopolymer concrete and mechanical properties. Adv Civ Eng. https://doi.org/10.1155/2021/5117584

    Article  Google Scholar 

  98. Li Y, Li J, Cui J, Shan Y, Niu Y (2021) Experimental study on calcium carbide residue as a combined activator for coal gangue geopolymer and feasibility for soil stabilization. Constr Build Mater 312:125465. https://doi.org/10.1016/j.conbuildmat.2021.125465

    Article  Google Scholar 

  99. Palomo A, Grutzeck MW, Blanco MT (1999) Alkali-activated fly ashes: a cement for the future. Cem Concr Res 29(8):1323–1329. https://doi.org/10.1016/S0008-8846(98)00243-9

    Article  Google Scholar 

  100. Hardjito D, Wallah SE, Sumajouw DMJ, Rangan BV (2016) Fly ash-based geopolymer concrete. Aust J Struct Eng 6(1):77–86. https://doi.org/10.1080/13287982.2005.11464946

    Article  Google Scholar 

  101. Heah CY, Kamarudin H, Al Bakri AM, Binhussain M, Luqman M, Nizar IK, Ruzaidi CM, Liew YM (2011) Effect of curing profile on kaolin-based geopolymers. Phys Procedia 22:305–311. https://doi.org/10.1016/j.phpro.2011.11.048

    Article  Google Scholar 

  102. Duong N, Skvara F (2016) Factors influencing the long-term properties of fly ash-based geopolymer mortar. Adv Civ Eng Mater 5(1):212–234. https://doi.org/10.1520/ACEM20160002

    Article  Google Scholar 

  103. Kiventera J, Perumal P, Yliniemi J, Illikainen M (2020) Mine tailings as a raw material in alkali activation: a review. Int J Miner Metall Mater 27:1009–1020. https://doi.org/10.1007/s12613-020-2129-6

    Article  Google Scholar 

  104. Zhang C, Yang XY, Li YF (2012) Mechanism and structural analysis of the thermal activation of coal-gangue. Adv Mater Res 356:1807–1812. https://doi.org/10.4028/www.scientific.net/AMR.356-360.1807

    Article  Google Scholar 

  105. Li Y, Yao Y, Liu X, Sun H, Ni W (2013) Improvement on pozzolanic reactivity of coal gangue by integrated thermal and chemical activation. Fuel 109:527–533. https://doi.org/10.1016/j.fuel.2013.03.010

    Article  Google Scholar 

  106. Vegas I, Cano M, Arribas I, Frias M, Rodriguez O (2015) Physical–mechanical behavior of binary cements blended with thermally activated coal mining waste. Constr Build Mater 99:169–174. https://doi.org/10.1016/j.conbuildmat.2015.07.189

    Article  Google Scholar 

  107. Yi C, Ma H, Zhu H, Li W, Xin M, Liu Y, Guo Y (2018) Study on chloride binding capability of coal gangue based cementitious materials. Constr Build Mater 167:649–656. https://doi.org/10.1016/j.conbuildmat.2018.02.071

    Article  Google Scholar 

  108. Liu Y, Lei S, Lin M, Li Y, Ye Z, Fan Y (2017) Assessment of pozzolanic activity of calcined coal-series kaolin. Appl Clay Sci 143:159–167. https://doi.org/10.1016/j.clay.2017.03.038

    Article  Google Scholar 

  109. Frasson BJ, Pinto RCA, Rocha JC (2019) Influence of different sources of coal gangue used as aluminosilicate powder on the mechanical properties and microstructure of alkali-activated cement. Mater Constr 69(336):e199–e199. https://doi.org/10.3989/mc.2019.12618

    Article  Google Scholar 

  110. Fernandez-Jimenez A, De La Torre AG, Palomo A, Lopez-Olmo G, Alonso MM, Aranda MAG (2006) Quantitative determination of phases in the alkali activation of fly ash part I potential ash react. Fuel 85(5–6):625–634. https://doi.org/10.1016/j.fuel.2005.08.014

    Article  Google Scholar 

  111. Criado M, Fernandez-Jimenez A, De La Torre AG, Aranda MAG, Palomo A (2007) An XRD study of the effect of the SiO2/Na2O ratio on the alkali activation of fly ash. Cem Concr Res 37(5):671–679. https://doi.org/10.1016/j.cemconres.2007.01.013

    Article  Google Scholar 

  112. Sturm P, Greiser S, Gluth GJG, Jäger C, Brouwers HJH (2015) Degree of reaction and phase content of silica-based one-part geopolymers investigated using chemical and NMR spectroscopic methods. J Mater Sci 50:6768–6778. https://doi.org/10.1007/s10853-015-9232-5

    Article  Google Scholar 

Download references

Funding

Aravind Goud Gaddam: Ministry of Education (IN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venkata Ramana Gondu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaddam, A.G., Amulya, G., Yamsani, S.K. et al. Efficacy of Coal Gangue as a Precursor in Synthesis of Geopolymer. Indian Geotech J (2023). https://doi.org/10.1007/s40098-023-00804-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40098-023-00804-6

Keywords

Navigation