Skip to main content
Log in

Degree of reaction and phase content of silica-based one-part geopolymers investigated using chemical and NMR spectroscopic methods

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

One-part geopolymers were synthesized from two different silica materials (a silica-rich residue from chlorosilane production and a commercial microsilica) and sodium aluminate at three different SiO2/Al2O3 ratios and a nominal water/solids ratio of 0.5. The degree of reaction of the silica in the cured geopolymers (i.e. the fraction of silica dissolved to form aluminosilicates and minor products) was determined using two different methods: chemical attack with HCl to dissolve the reaction products and evaluation of peak areas of 29Si MAS NMR spectra. It was found that the degree of reaction of the silica decreases with increasing the silica content of the starting mix, and that it is almost constant after 1 day of curing and almost independent from the kind of starting silica. From the results of the NMR-based method, the mean SiO2/Al2O3 ratio of the reaction products (aluminosilicates and minor products) can be estimated to be ca. 2.0, nearly independent of the starting composition of the geopolymers. The dissolution method is biased, but of sufficient precision to be useful for following changes of the degree of reaction. Major crystalline phases in the cured geopolymers are zeolite A and/or hydrosodalite. Depending on the starting composition, the relative amounts of these zeolites vary; additionally, sodalite (only for the residue from chlorosilane production with >1 wt% Cl), faujasite, and zeolite EMT can appear in the geopolymers. The 29Si and 27Al MAS NMR results indicate mainly Si(4Al) and Al(4Si) sites, in line with the presence of zeolite A, hydrosodalite, sodalite, and geopolymeric gel of comparatively low SiO2/Al2O3 ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Herr R (2004) Geopolymere - eine neue mineralische Baustoff-Generation für den Brandschutz von Ingenieurbauwerken. IEMB Info 2004/7. Institut für Erhaltung und Modernisierung von Bauwerken e.V., Berlin

  2. Bell J, Gordon M, Kriven W (2005) Use of geopolymeric cements as a refractory adhesive for metal and ceramic joins. Ceram Eng Sci Proc 26(3):407–413

    Article  Google Scholar 

  3. Krivenko PV, Kovalchuk GY (2007) Directed synthesis of alkaline aluminosilicate minerals in a geocement matrix. J Mater Sci 42:2944–2952. doi:10.1007/s10853-006-0528-3

    Article  Google Scholar 

  4. Krivenko PV, Pushkavera YK, Sukhanevich MV, Guziy SG (2009) Fireproof coatings on the basis of alkaline aluminum silicate systems. Ceram Eng Sci Proc 29(10):129–142

    Google Scholar 

  5. Temuujin J, Minjigmaa A, Rickard W, Lee M, Williams I, van Riessen A (2010) Fly ash based geopolymer thin coatings on metal substrates and its thermal evaluation. J Hazard Mater 180:748–752

    Article  Google Scholar 

  6. Montes C, Allouche EN (2012) Evaluation of the potential of geopolymer mortar in the rehabilitation of buried infrastructure. Struct Infrastruct Eng 8:89–98

    Article  Google Scholar 

  7. Duxson P, Provis JL, Lukey GC, van Deventer JSJ (2007) The role of inorganic polymer technology in the development of ‘green concrete’. Cem Concr Res 37:1590–1597

    Article  Google Scholar 

  8. Duxson P, Fernández-Jiménez A, Provis JL, Lukey GC, Palomo A, van Deventer JSJ (2007) Geopolymer technology: the current state of the art. J Mater Sci 42:2917–2933. doi:10.1007/s10853-006-0637-z

    Article  Google Scholar 

  9. Provis JL, van Deventer JSJ (eds) (2014) Alkali activated materials: state-of-the-art-report, RILEM TC 224-AAM. Springer, Dordrecht

    Google Scholar 

  10. Hajimohammadi A, Provis JL, van Deventer JSJ (2008) One-part geopolymer mixes from geothermal silica and sodium aluminate. Ind Eng Chem Res 47:9396–9405

    Article  Google Scholar 

  11. Duxson P, Provis JL (2008) Designing precursors for geopolymer cements. J Am Ceram Soc 91:3864–3869

    Article  Google Scholar 

  12. Koloušek D, Brus J, Urbanova M, Andertova J, Hulinsky V, Vorel J (2007) Preparation, structure and hydrothermal stability of alternative (sodium silicate-free) geopolymers. J Mater Sci 42:9267–9275. doi:10.1007/s10853-007-1910-5

    Article  Google Scholar 

  13. Hajimohammadi A, Provis JL, van Deventer JSJ (2010) Effect of alumina release rate on the mechanism of geopolymer gel formation. Chem Mater 22:5199–5208

    Article  Google Scholar 

  14. Feng D, Provis JL, van Deventer JSJ (2012) Thermal activation of albite for the synthesis of one-part mix geopolymers. J Am Ceram Soc 95:565–572

    Article  Google Scholar 

  15. Brew DRM, MacKenzie KJD (2007) Geopolymer synthesis using silica fume and sodium aluminate. J Mater Sci 42:3990–3993. doi:10.1007/s10853-006-0376-1

    Article  Google Scholar 

  16. Hajimohammadi A, Provis JL, van Deventer JSJ (2011) The effect of silica availability on the mechanism of geopolymerisation. Cem Concr Res 41:210–216

    Article  Google Scholar 

  17. Gluth GJG, Lehmann C, Rübner K, Kühne H-C (2013) Geopolymerization of a silica residue from waste treatment of chlorosilane production. Mater Struct 46:1291–1298

    Article  Google Scholar 

  18. Greiser S, Gluth GJG, Sturm P, Brouwers HJH, Jäger C (2014) 27Al-1H and 27Al-29Si double resonance NMR of one-part geopolymers. In: Non-Traditional Cement & Concrete V—Proceedings of the International Conference, Brno, Czech Republic, pp 91–94

  19. Sturm P, Gluth GJG, Schmidt W, Astorg A, Kühne H-C, Brouwers HJH (2014) Rheological properties of microsilica and sodium aluminate based one-part geopolymers compared to ordinary Portland cement. In: Non-Traditional Cement & Concrete V—Proceedings of the International Conference, Brno, Czech Republic, pp 241–244

  20. Sturm P, Gluth GJG, Lindemann M, Greiser S, Jäger C, Brouwers HJH (2014) Structural investigations on one-part geopolymers after different drying regimes. In: Proceedings of the 34th Annual Cement and Concrete Science Conference, and Workshop on Waste Cementation, Sheffield, United Kingdom, pp 37–40

  21. Bennett AE, Rienstra CM, Auger M, Lakshmi KV, Griffin RG (1995) Heteronuclear decoupling in rotating solids. J Chem Phys 103:6951–6958

    Article  Google Scholar 

  22. Massiot D, Fayon F, Capron M, King I, Le Calvé S, Alonso B, Durand J-O, Bujoli B, Gan Z, Hoatson G (2002) Modelling one- and two-dimensional solid-state NMR spectra. Magn Reson Chem 40:70–76

    Article  Google Scholar 

  23. Fernández-Jiménez A, de la Torre AG, Palomo A, López-Olmo G, Alonso MM, Aranda MAG (2006) Quantitative determination of phases in the alkaline activation of fly ash. Part II: degree of reaction. Fuel 85:1960–1969

    Article  Google Scholar 

  24. Zhang B, MacKenzie KJD, Brown IWM (2009) Crystalline phase formation in metakaolinite geopolymers activated with NaOH and sodium silicate. J Mater Sci 44:4668–4676. doi:10.1007/s10853-009-3715-1

    Article  Google Scholar 

  25. Weitkamp J, Schumacher R, Weiß U (1992) Hydrothermalsynthese und Charakterisierung von Zeolith EMT. Chem Ing Tech 64:1109–1112

    Article  Google Scholar 

  26. Provis JL, Lukey GC, van Deventer JSJ (2005) Do geopolymers actually contain nanocrystalline zeolites? A reexamination of existing results. Chem Mater 17:3075–3085

    Article  Google Scholar 

  27. Engelhardt G, Michel D (1987) High-resolution solid-state NMR of silicates and zeolites. Wiley, Chichester

    Google Scholar 

  28. Lippmaa E, Mägi M, Samoson A, Tarmak M, Engelhardt G (1981) Investigation of the structure of zeolites by solid-state high-resolution 29Si NMR spectroscopy. J Am Chem Soc 103:4992–4996

    Article  Google Scholar 

  29. Fletcher RA, MacKenzie KJD, Nicholson CL, Shimada S (2005) The composition range of aluminosilicate geopolymers. J Eur Ceram Soc 25:1471–1477

    Article  Google Scholar 

  30. Engelhardt G, Felsche J, Sieger P (1992) The hydrosodalite system Na6+x [SiAlO4]6(OH) x nH2O: formation, phase composition, and de- and rehydration studied by 1H, 23Na, and 29Si MAS–NMR spectroscopy in tandem with thermal analysis, X-ray diffraction, and IR spectroscopy. J Am Chem Soc 114:1173–1182

    Article  Google Scholar 

  31. Brough AR, Dobson CM, Richardson IG, Groves GW (1995) A study of the pozzolanic reaction by solid-state 29Si nuclear magnetic resonance using selective isotopic enrichment. J Mater Sci 30:1671–1678. doi:10.1007/BF00351595

    Article  Google Scholar 

  32. Sun G, Brough AR, Young JF (1999) 29Si NMR study of the hydration of Ca3SiO5 and β-Ca2SiO4 in the presence of silica fume. J Am Ceram Soc 82:3225–3230

    Article  Google Scholar 

  33. Leemann A, Le Saout G, Winnefeld F, Rentsch D, Lothenbach B (2011) Alkali-silica reaction: the influence of calcium on silica dissolution and the formation of reaction products. J Am Ceram Soc 94:1243–1249

    Article  Google Scholar 

  34. Fyfe CA, Gobbi GC, Hartman JS, Klinowski J, Thomas JM (1982) Solid-state magic-angle spinning aluminum-27 nuclear magnetic resonance studies of zeolites using a 400-MHz high-resolution spectrometer. J Phys Chem 86:1247–1250

    Article  Google Scholar 

  35. Lippmaa E, Samoson A, Mägi M (1986) High-resolution 27Al NMR of aluminosilicates. J Am Chem Soc 108:1730–1735

    Article  Google Scholar 

  36. Hartman RL, Fogler HS (2005) Reaction kinetics and mechanisms of zeolite dissolution in hydrochloric acid. Ind Eng Chem Res 44:7738–7745

    Article  Google Scholar 

  37. Hartman RL, Fogler HS (2007) Understanding the dissolution of zeolites. Langmuir 23:5477–5484

    Article  Google Scholar 

  38. Oh JE, Moon J, Mancio M, Clark SM, Monteiro PJM (2011) Bulk modulus of basic hydrosodalite, Na8[AlSiO4]6(OH)2·2H2O, a possible zeolitic precursor in coal-fly-ash-based geopolymers. Cem Concr Res 41:107–112

    Article  Google Scholar 

  39. Felsche J, Luger S (1987) Phases and thermal decomposition characteristics of hydro-sodalites Na6+x [AlSiO4]6(OH) x ·nH2O. Thermochim Acta 118:35–55

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Sturm.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sturm, P., Greiser, S., Gluth, G.J.G. et al. Degree of reaction and phase content of silica-based one-part geopolymers investigated using chemical and NMR spectroscopic methods. J Mater Sci 50, 6768–6778 (2015). https://doi.org/10.1007/s10853-015-9232-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9232-5

Keywords

Navigation