Skip to main content
Log in

Comparison and interpretation of isotherm models for the adsorption of dyes, proteins, antibiotics, pesticides and heavy metal ions on different nanomaterials and non-nano materials—a comprehensive review

  • Review
  • Published:
Journal of Nanostructure in Chemistry Aims and scope Submit manuscript

Abstract

Adsorption is most commonly applied in water treatment, gas purification/separation, catalysis, etc. It is a very simple and inexpensive technique. However, the performance depends on the type of adsorbent and its dosage. Researchers across the world keep seeking low-cost and more effective adsorbents. As a result, millions of research publications on adsorption have been published yearly. Most of these publications report the synthesis of new adsorbents from various sources and their application in the remediation of several inorganic and organic pollutants from water bodies. Researchers attempt to fit their experimental results with various isotherm models to understand the adsorption mechanism. Some researchers fit data into linear isotherm models, while others add non-linear isotherm models for estimating the isotherm parameters. The fit of isotherm models differs for various adsorbents and contaminants. The present paper is comprehensive review compiling information on isotherm models that explain the intrinsic mechanisms of adsorptive removal of pollutants such as antibiotics, dyes, proteins, pesticides and heavy metal ions. Furthermore, a detailed characteristic property of numerous cationic dyes, anionic dyes, proteins, antibiotics, pesticides and heavy metal ions was also discussed. It is observed that based on the literature reviewed, it was found that the adsorption equilibrium data of cationic dyes and anionic dyes were well defined with the Langmuir model. Additionally, in the case of the adsorption of proteins, antibiotics and heavy metal ions, the Langmuir model is well matched among all applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and materials

This published article is included in all data generated or analysed during this study.

References

  1. Ahmad, A., Mohd-Setapar, S.H., Chuong, C.S., Khatoon, A., Wani, W.A., Kumar, R., Rafatullah, M.: Recent advances in new generation dye removal technologies: novel search for approaches to reprocess wastewater. RSC Adv. 5, 30801–30818 (2015)

    Article  CAS  Google Scholar 

  2. Katheresan, V., Kansedo, J., Lau, S.Y.: Efficiency of various recent wastewater dye removal methods: a review. J. Environ. Chem. Eng. 6, 4676–4697 (2018)

    Article  CAS  Google Scholar 

  3. Pavithra, K.G., Kumar, S., Jaikumar, V.: Removal of colorants from wastewater: a review on sources and treatment strategies. J. Ind. Eng Chem. 75, 1–19 (2019)

    Article  CAS  Google Scholar 

  4. Azari, A., Nabizadeh, R., Nasseri, S., Mahvi, A.H., Mesdaghinia, A.R.: Comprehensive systematic review and meta-analysis of dyes adsorption by carbon-based adsorbent materials: classification and analysis of last decade studies. Chemosphere 250, 126238 (2020)

    Article  CAS  Google Scholar 

  5. Rajabi, M., Mahanpoor, K., Moradi, O.: Removal of dye molecules from aqueous solution by carbon nanotubes and carbon nanotube functional groups: critical review. RSC Adv. 7, 47083–47090 (2017)

    Article  CAS  Google Scholar 

  6. Pauletto, P.S., Gonçalves, J.O., Pinto, L.A.A., Dotto, G.L., Salau, N.P.G.: Single and competitive dye adsorption onto chitosan-based hybrid hydrogels using artificial neural network modeling. J. Colloid Interface Sci. 560, 722–729 (2020)

    Article  CAS  Google Scholar 

  7. Robati, D., Mirza, B., Rajabi, M., Moradi, O., Tyagi, I., Agarwal, S., Gupta, V.K.: Removal of hazardous dyes-BR 12 and methyl orange using graphene oxide as an adsorbent from aqueous phase. Chem. Eng. J. 284, 687–697 (2016)

    Article  CAS  Google Scholar 

  8. Chaudhary, M., Suhas, Singh, R., Yilmaz, M., Chaudhary, S., Kushwaha, S.: Role of the similar molecular weight dyes on the adsorption by activated carbon. Desalin Water Treat. 244, 343–354 (2021)

    Article  CAS  Google Scholar 

  9. Enayatpour, B., Rajabi, M., Yari, M., Reza Mirkhan, S.M., Najafi, F., Moradi, O., Bharti, A.K., Agarwal, S., Gupta, V.K.: Adsorption/desorption study of proteins onto multi-walled carbon nanotubes and amino multi-walled carbon nanotubes surfaces as adsorbents. J. Mol. Liq. 231, 566–571 (2017)

    Article  CAS  Google Scholar 

  10. Lim, G.W., Lim, J.K., Ahmad, A.L., Chan, D.J.C.: Influences of diatom frustule morphologies on protein adsorption behavior. J. Appl. Phycol. 27, 763–775 (2014)

    Article  Google Scholar 

  11. Hedayati, M., Marruecos, D.F., Krapf, D., Kaar, J.L., Kipper, M.J.: Protein adsorption measurements on low fouling and ultralow fouling surfaces: a critical comparison of surface characterization techniques. Acta Biomater. 102, 169–180 (2020)

    Article  CAS  Google Scholar 

  12. Gao, Y., Li, Y., Zhang, L., Huang, H., Hu, J., Shah, S.M., Su, X.: Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide. J. Colloid Interface Sci. 368, 540–546 (2012)

    Article  CAS  Google Scholar 

  13. Li, J., Zhang, K., Zhang, H.: Adsorption of antibiotics on microplastics. Environ Pollut. 237, 460–467 (2018)

    Article  CAS  Google Scholar 

  14. Nasseh, N., Barikbin, B., Taghavi, L., Nasseri, M.A.: Adsorption of metronidazole antibiotic using a new magnetic nanocomposite from simulated wastewater (isotherm, kinetic and thermodynamic studies). Compos. B. Eng. 159, 146–156 (2019)

    Article  CAS  Google Scholar 

  15. Wang, F., Pan, Y., Cai, P., Guo, T., Xiao, H.: Single and binary adsorption of heavy metal ions from aqueous solutions using sugarcane cellulose-based adsorbent. Bioresour. Technol. 241, 482–490 (2017)

    Article  CAS  Google Scholar 

  16. Castro, L., Blázquez, M.L., González, F., Muñoz, J.A., Ballester, A.: Heavy metal adsorption using biogenic iron compounds. Hydrometallurgy 179, 44–51 (2018)

    Article  CAS  Google Scholar 

  17. Negm, N.A., Abd El Wahed, M.G., Hassan, A.R.A., Abou Kana, M.T.H.: Feasibility of metal adsorption using brown algae and fungi: effect of biosorbents structure on adsorption isotherm and kinetics. J. Mol. Liq. 264, 292–305 (2018)

    Article  CAS  Google Scholar 

  18. Zhao, X., Ma, X., Zheng, P.: The preparation of carboxylic-functional carbon-based nanofibers for the removal of cationic pollutants. Chemosphere 202, 298–305 (2018)

    Article  CAS  Google Scholar 

  19. Rekha, S., Naik, Prasad, R.: Pesticide residue in organic and conventional food-risk analysis. J. Chem. Health Saf. 13, 12–19 (2006)

    Article  CAS  Google Scholar 

  20. Rezaei, M., Shariatifar, N., Shoeibi, S., Ahmadi, M.A., Khaniki, G.J.: Simultaneous determination of residue from 58 pesticides in the wheat flour consumed in Tehran, Iran by GC/MS. Iran J Pharm Res. 16, 1048 (2017)

    CAS  Google Scholar 

  21. Karri, R.R., Ravindran, G., Dehghani, M.H.: Wastewater—sources, toxicity, and their consequences to human health. In: Soft Computing Techniques in Solid Waste and Wastewater Management, pp. 3–33. Elsevier, Amsterdam (2021)

    Chapter  Google Scholar 

  22. Memetova, A., Tyagi, I., Singh, L., Karri, R.R., Tyagi, K., Kumar, V., Memetov, N., Zelenin, A., Tkachev, A., Bogoslovskiy, V., Shigabaeva, G.: Nanoporous carbon materials as a sustainable alternative for the remediation of toxic impurities and environmental contaminants: a review. Sci. Total Environ. 838, 155943 (2022)

    Article  CAS  Google Scholar 

  23. Khan, F.S.A., Mubarak, N.M., Khalid, M., Tan, Y.H., Abdullah, E.C., Rahman, M.E., Karri, R.R.: A comprehensive review on micropollutants removal using carbon nanotubes-based adsorbents and membranes. J. Environ. Chem. Eng. 9, 106647 (2021)

    Article  CAS  Google Scholar 

  24. Pakdel, S., Majidi, S., Azamat, J., Erfan-Niya, H.: graphene oxide and reduced graphene oxide as nanofillers in membrane separation. In: Two-Dimensional (2D) Nanomaterials in Separation Science, pp. 13–144. Springer International Publishing, Cham (2021)

    Google Scholar 

  25. Verma, M., Tyagi, I., Kumar, V., Goel, S., Vaya, D., Kim, H.: Fabrication of GO–MnO2 nanocomposite using hydrothermal process for cationic and anionic dyes adsorption: kinetics, isotherm, and reusability. J. Environ. Chem. Eng. 9, 106045 (2021)

    Article  CAS  Google Scholar 

  26. Mehmood, A., Khan, F.S.A., Mubarak, N.M., Tan, Y.H., Karri, R.R., Khalid, M., Walvekar, R., Abdullah, E.C., Nizamuddin, S., Mazari, S.A.: Magnetic nanocomposites for sustainable water purification—a comprehensive review. Environ. Sci. Pollut. Res. 28, 19563–19588 (2021)

    Article  CAS  Google Scholar 

  27. Yee, M.J., Mubarak, N.M., Abdullah, E.C., Khalid, M., Walvekar, R., Karri, R.R., Nizamuddin, S., Numan, A.: Carbon nanomaterials based films for strain sensing application—a review. Nano-Struct. Nano-Objects 18, 100312 (2019)

    Article  CAS  Google Scholar 

  28. Verma, M., Tyagi, I., Chandra, R., Gupta, V.K.: Adsorptive removal of Pb (II) ions from aqueous solution using CuO nanoparticles synthesized by sputtering method. J. Mol. Liq. 225, 936–944 (2017)

    Article  CAS  Google Scholar 

  29. Agarwal, S., Tyagi, I., Gupta, V.K., Sohrabi, M., Mohammadi, S., Golikand, A.N., Fakhri, A.: Iron doped SnO2/Co3O4 nanocomposites synthesized by sol-gel and precipitation method for metronidazole antibiotic degradation. Mater. Sci. Eng. C 70, 178–183 (2017)

    Article  CAS  Google Scholar 

  30. Sahu, J.N., Karri, R.R., Zabed, H.M., Shams, S., Qi, X.: Current perspectives and future prospects of nano-biotechnology in wastewater treatment. Sep. Purif. Rev. 50, 139–158 (2019)

    Article  Google Scholar 

  31. Gupta, V.K., Carrott, P.J.M., Ribeiro Carrott, M.M.L., Suhas: Low-cost adsorbents: growing approach to wastewater treatment—a review. Crit. Rev. Environ. Sci. Technol. 39, 783–842 (2009)

    Article  Google Scholar 

  32. Gupta, V.K., Chandra, R., Tyagi, I., Verma, M.: Removal of hexavalent chromium ions using CuO nanoparticles for water purification applications. J. Colloid Interface Sci. 478, 54–62 (2016)

    Article  CAS  Google Scholar 

  33. Hokkanen, S., Sillanpää, M.: Nano- and microcellulose-based adsorption materials in water treatment. In: Advanced Water Treatment, pp. 1–83. Elsevier, Amsterdam (2020)

    Google Scholar 

  34. Rajabi, M., Mahanpoor, K., Moradi, O.: Thermodynamic and kinetic studies of crystal violet dye adsorption with poly(methyl methacrylate)–graphene oxide and poly(methyl methacrylate)–graphene oxide–zinc oxide nanocomposites. J. Appl. Polym. Sci. 136, 47495 (2019)

    Article  Google Scholar 

  35. Rajabi, M., Moradi, O., Sillanpää, M., Zare, K., Asiri, A.M., Agarwal, S., Gupta, V.K.: Removal of toxic chemical ethidium monoazide bromide using graphene oxide: thermodynamic and kinetics study. J. Mol. Liq. 293, 111484 (2019)

    Article  CAS  Google Scholar 

  36. Chaudhary, M., Suhas, Singh, R., Tyagi, I., Ahmed, J., Chaudhary, S., Kushwaha, S.: Microporous activated carbon as adsorbent for the removal of noxious anthraquinone acid dyes: Role of adsorbate functionalization. J. Environ. Chem. Eng. 9, 106308 (2021)

    Article  CAS  Google Scholar 

  37. Suhas, Carrott, P., Carrott, M.R., Singh, R., Singh, L., Chaudhary, M.: An innovative approach to develop microporous activated carbons in oxidising atmosphere. J. Clean. Prod. 156, 549–555 (2017)

    Article  CAS  Google Scholar 

  38. Suhas, Gupta, V.K., Carrott, P.J.M., Singh, R., Chaudhary, M., Kushwaha, S.: Cellulose: a review as natural, modified and activated carbon adsorbent. Bioresour. Technol. 216, 1066–1076 (2016)

    Article  CAS  Google Scholar 

  39. Suhas, Carrott, P.J.M., Ribeiro Carrott, M.M.L.: Lignin—from natural adsorbent to activated carbon: a review. Bioresour. Technol. 98, 2301–2312 (2007)

    Article  CAS  Google Scholar 

  40. Gupta, V.K., Ali, I., Suhas, Mohan, D.: Equilibrium uptake and sorption dynamics for the removal of a basic dye (basic red) using low-cost adsorbents. J. Colloid Interface Sci. 265, 257–264 (2003)

    Article  CAS  Google Scholar 

  41. de Sousa, D.N.R., Insa, S., Mozeto, A.A., Petrovic, M., Chaves, T.F., Fadini, P.S.: Equilibrium and kinetic studies of the adsorption of antibiotics from aqueous solutions onto powdered zeolites. Chemosphere 205, 137–146 (2018)

    Article  Google Scholar 

  42. Karri, R.R., Sahu, J.N.: Modeling and optimization by particle swarm embedded neural network for adsorption of zinc (II) by palm kernel shell based activated carbon from aqueous environment. J. Environ. Manage. 206, 178–191 (2018)

    Article  CAS  Google Scholar 

  43. Dehghani, M.H., Karri, R.R., Yeganeh, Z.T., Mahvi, A.H., Nourmoradi, H., Salari, M., Zarei, A., Sillanpää, M.: Statistical modelling of endocrine disrupting compounds adsorption onto activated carbon prepared from wood using CCD-RSM and DE hybrid evolutionary optimization framework: Comparison of linear vs non-linear isotherm and kinetic parameters. J. Mol. Liq. 302, 112526 (2020)

    Article  CAS  Google Scholar 

  44. Singh, H., Chauhan, G., Jain, A.K., Sharma, S.: Adsorptive potential of agricultural wastes for removal of dyes from aqueous solutions. J. Environ. Chem. Eng. 5, 122–135 (2017)

    Article  CAS  Google Scholar 

  45. Xu, Z., Zhang, Q., Fang, H.H.: Applications of porous resin sorbents in industrial wastewater treatment and resource recovery. Crit Rev Environ Sci Technol. 33, 363–389 (2003)

    Article  CAS  Google Scholar 

  46. Mehmood, A., Khan, F.S.A., Mubarak, N.M., Mazari, S.A., Jatoi, A.S., Khalid, M., Tan, Y.H., Karri, R.R., Walvekar, R., Abdullah, E.C., Nizamuddin, S.: Carbon and polymer-based magnetic nanocomposites for oil-spill remediation—a comprehensive review. Environ. Sci. Pollut. Res. 28, 54477–54496 (2021)

    Article  CAS  Google Scholar 

  47. Fiol, N., Villaescusa, I., Martínez, M., Miralles, N., Poch, J., Serarols, J.: Sorption of Pb(II), Ni(II), Cu(II) and Cd(II) from aqueous solution by olive stone waste. Sep. Purif. Technol. 50, 132–140 (2006)

    Article  CAS  Google Scholar 

  48. Karri, R.R., Shams, S., Sahu, J.N.: Overview of potential applications of nano-biotechnology in wastewater and effluent treatment. In: Nanotechnology in Water and Wastewater Treatment, pp. 87–100. Elsevier, Amsterdam (2019)

    Chapter  Google Scholar 

  49. Thakur, A., Kumar, A.: Recent advances on rapid detection and remediation of environmental pollutants utilizing nanomaterials-based (bio)sensors. Sci. Total Environ. 834, 155219 (2022)

    Article  CAS  Google Scholar 

  50. Thakur, A., Kumar, A., Kaya, S., Vo, D.-V.N., Sharma, A.: Suppressing inhibitory compounds by nanomaterials for highly efficient biofuel production: a review. Fuel 312, 122934 (2022)

    Article  CAS  Google Scholar 

  51. Khan, F.S.A., Mubarak, N.M., Tan, Y.H., Karri, R.R., Khalid, M., Walvekar, R., Abdullah, E.C., Mazari, S.A., Nizamuddin, S.: Magnetic nanoparticles incorporation into different substrates for dyes and heavy metals removal—a review. Environ. Sci. Pollut. Res. 27, 43526–43541 (2020)

    Article  CAS  Google Scholar 

  52. Karri, R.R., Sahu, J.N., Jayakumar, N.S.: Optimal isotherm parameters for phenol adsorption from aqueous solutions onto coconut shell based activated carbon: error analysis of linear and non-linear methods. J. Taiwan Inst. Chem. Eng. 80, 472–487 (2017)

    Article  CAS  Google Scholar 

  53. Rajabi, M., Najafi, F., Moradi, O., Mirza, B., Thakur, V.K.: Nanopolymers: graphene and functionalization. In: Biopolymer Grafting: Synthesis and Properties, pp. 365–407. Elsevier, Amsterdam (2018)

    Chapter  Google Scholar 

  54. Shen, D., Fan, J., Zhou, W., Gao, B., Yue, Q., Kang, Q.: Adsorption kinetics and isotherm of anionic dyes onto organo-bentonite from single and multisolute systems. J. Hazard. Mater. 172, 99–107 (2009)

    Article  CAS  Google Scholar 

  55. Gupta, V.K., Moradi, O., Tyagi, I., Agarwal, S., Sadegh, H., Shahryari-Ghoshekandi, R., Makhlouf, A.S.H., Goodarzi, M., Garshasbi, A.: Study on the removal of heavy metal ions from industry waste by carbon nanotubes: effect of the surface modification: a review. Crit. Rev. Environ. Sci. Technol. 46, 93–118 (2016)

    Article  CAS  Google Scholar 

  56. Foo, K.Y., Hameed, B.H.: Insights into the modeling of adsorption isotherm systems. Chem. Eng. J. 156, 2–10 (2010)

    Article  CAS  Google Scholar 

  57. Dąbrowski, A.: Adsorption—from theory to practice. Adv. Colloid Interface Sci. 93, 135–224 (2001)

    Article  Google Scholar 

  58. Hu, Q., Zhang, Z.: Application of Dubinin–Radushkevich isotherm model at the solid/solution interface: a theoretical analysis. J. Mol. Liq. 277, 646–648 (2019)

    Article  CAS  Google Scholar 

  59. Xiong, W., Zeng, G., Yang, Z., Zhou, Y., Zhang, C., Cheng, M., Liu, Y., Hu, L., Wan, J., Zhou, C., Xu, R., Li, X.: Adsorption of tetracycline antibiotics from aqueous solutions on nanocomposite multi-walled carbon nanotube functionalized MIL-53(Fe) as new adsorbent. Sci. Total Environ. 627, 235–244 (2018)

    Article  CAS  Google Scholar 

  60. Ai, T., Jiang, X., Liu, Q., Lv, L., Wu, H.: Daptomycin adsorption on magnetic ultra-fine wood-based biochars from water: kinetics, isotherms, and mechanism studies. Bioresour. Technol. 273, 8–15 (2019)

    Article  CAS  Google Scholar 

  61. Gupta, V.K., Nayak, A., Agarwal, S., Tyagi, I.: Potential of activated carbon from waste rubber tire for the adsorption of phenolics: effect of pre-treatment conditions. J. Colloid Interface Sci. 417, 420–430 (2014)

    Article  CAS  Google Scholar 

  62. Gimbert, F., Morin-Crini, N., Renault, F., Badot, P.-M., Crini, G.: Adsorption isotherm models for dye removal by cationized starch-based material in a single component system: error analysis. J. Hazard. Mater. 157, 34–46 (2008)

    Article  CAS  Google Scholar 

  63. Sips, R.: On the structure of a catalyst surface. J. Chem. Phys. 16, 490–495 (1948)

    Article  CAS  Google Scholar 

  64. Yagub, M.T., Sen, T.K., Afroze, S., Ang, H.M.: Dye and its removal from aqueous solution by adsorption: a review. Adv. Colloid Interface Sci. 209, 172–184 (2014)

    Article  CAS  Google Scholar 

  65. Gupta, V.K., Suhas: Application of low-cost adsorbents for dye removal—a review. J. Environ. Manage. 90, 2313–2342 (2009)

    Article  CAS  Google Scholar 

  66. Ahmed, M.J.: Application of agricultural based activated carbons by microwave and conventional activations for basic dye adsorption: review. J. Environ. Chem. Eng. 4, 89–99 (2016)

    Article  CAS  Google Scholar 

  67. George, G., Saravanakumar, M.P.: Facile synthesis of carbon-coated layered double hydroxide and its comparative characterisation with Zn–Al LDH: application on crystal violet and malachite green dye adsorption—isotherm, kinetics and Box–Behnken design. Environ. Sci. Pollut. Res. 25, 30236–30254 (2018)

    Article  CAS  Google Scholar 

  68. Fideles, R.A., Ferreira, G.M.D., Teodoro, F.S., Adarme, O.F.H., da Silva, L.H.M., Gil, L.F., Gurgel, L.V.A.: Trimellitated sugarcane bagasse: A versatile adsorbent for removal of cationic dyes from aqueous solution. Part I: Batch adsorption in a monocomponent system. J. Colloid Interface Sci. 515, 172–188 (2018)

    Article  CAS  Google Scholar 

  69. Badri, N., Zbair, M., Sahibed-Dine, A., Chhiti, Y., Khamliche, L., Bensitel, M.: Adsorption of cationic dyes by waste biomass treated by phosphoric acid. J. Mater. Environ. Sci. 9, 1636–1644 (2018)

    CAS  Google Scholar 

  70. Oveisi, M., Asli, M.A., Mahmoodi, N.M.: MIL-Ti metal-organic frameworks (MOFs) nanomaterials as superior adsorbents: synthesis and ultrasound-aided dye adsorption from multicomponent wastewater systems. J. Hazard. Mater. 347, 123–140 (2018)

    Article  CAS  Google Scholar 

  71. Xu, M., Bi, B., Xu, B., Sun, Z., Xu, L.: Polyoxometalate-intercalated ZnAlFe-layered double hydroxides for adsorbing removal and photocatalytic degradation of cationic dye. Appl. Clay Sci. 157, 86–91 (2018)

    Article  CAS  Google Scholar 

  72. Gupta, V.K., Nayak, A., Agarwal, S., Chaudhary, M., Tyagi, I.: Removal of Ni (II) ions from water using scrap tire. J. Mol. Liq. 190, 215–222 (2014)

    Article  CAS  Google Scholar 

  73. Zhou, M., Ji, Y., Li, F., Hu, H., Wang, P., Jia, K., Liu, X.: Fe 3+ mediated self-assembling of polyarylene ether nitrile block copolymer into cationic dye adsorptive sub-micrometer spheres. Mater. Lett. 222, 183–186 (2018)

    Article  CAS  Google Scholar 

  74. Hua, Y., Xiao, J., Zhang, Q., Cui, C., Wang, C.: Facile synthesis of surface-functionalized magnetic nanocomposites for effectively selective adsorption of cationic dyes. Nanoscale Res. Lett. 13, 1–9 (2018)

    Article  Google Scholar 

  75. Enayatpour, B., Rajabi, M., Moradi, O., Asdolehzade, N., Nayak, A., Agarwal, S., Gupta, V.K.: Adsorption kinetics of lysozyme on multi-walled carbon nanotubes and amino functionalized multi-walled carbon nanotubes from aqueous solution. J. Mol. Liq. 254, 93–97 (2018)

    Article  CAS  Google Scholar 

  76. Qi, X., Wu, L., Su, T., Zhang, J., Dong, W.: Polysaccharide-based cationic hydrogels for dye adsorption. Colloids Surf B Biointerfaces 170, 364–372 (2018)

    Article  CAS  Google Scholar 

  77. Wang, W., Huang, G., An, C., Zhao, S., Chen, X., Zhang, P.: Adsorption of anionic azo dyes from aqueous solution on cationic gemini surfactant-modified flax shives: synchrotron infrared, optimization and modeling studies. J. Clean. Prod. 172, 1986–1997 (2018)

    Article  CAS  Google Scholar 

  78. Zhou, M., Ji, Y., Li, F., Hu, H., Wang, P., Jia, K., Liu, X.: Fe3+ mediated self-assembling of polyarylene ether nitrile block copolymer into cationic dye adsorptive sub-micrometer spheres. Mater. Lett. 222, 183–186 (2018)

    Article  CAS  Google Scholar 

  79. Zhang, S.-F., Yang, M.-X., Qian, L.-W., Hou, C., Tang, R.-H., Yang, J.-F., Wang, X.-C.: Design and preparation of a cellulose-based adsorbent modified by imidazolium ionic liquid functional groups and their studies on anionic dye adsorption. Cellulose 25, 3557–3569 (2018)

    Article  CAS  Google Scholar 

  80. Caldeira, A.S., Fabris, J.D., Nelson, D.L., Damasceno, S.M.: Removal of textile dye by adsortion on the cake as solid waste from the press-extraction of the macaúba (Acrocomia aculeata) kernel oil. Eclet. Quim. J. 43, 48 (2018)

    Article  CAS  Google Scholar 

  81. Al-Sabagh, A.M., Moustafa, Y.M., Hamdy, A., Killa, H.M., Ghanem, R.T.M., Morsi, R.E.: Preparation and characterization of sulfonated polystyrene/magnetite nanocomposites for organic dye adsorption. Egypt. J. Pet. 27, 403–413 (2018)

    Article  Google Scholar 

  82. Sharma, J., Kaith, B.S., Sharma, A.K., Goel, A.: Gum xanthan-psyllium-cl-poly (acrylic acid-co-itaconic acid) based adsorbent for effective removal of cationic and anionic dyes: adsorption isotherms, kinetics and thermodynamic studies. Ecotoxicol. Environ. Saf. 149, 150–158 (2018)

    Article  Google Scholar 

  83. Hlasiwetz, H., Habermann, J.: Ueber die Proteinstoffe. Justus Liebigs Ann. Chem. 159, 304–333 (1871)

    Article  Google Scholar 

  84. Schmidt, B.: Proteins: Structure and Function. By David Whitford. Wiley Online Library (2006)

  85. Rabe, M., Verdes, D., Seeger, S.: Understanding protein adsorption phenomena at solid surfaces. Adv. Colloid Interface Sci. 162, 87–106 (2011)

    Article  CAS  Google Scholar 

  86. Marbán, G., Ramírez-Montoya, L.A., García, H., Menéndez, J.Á., Arenillas, A., Montes-Morán, M.A.: Load-dependent surface diffusion model for analyzing the kinetics of protein adsorption onto mesoporous materials. J. Colloid Interface Sci. 511, 27–38 (2018)

    Article  Google Scholar 

  87. Seredych, M., Mikhalovska, L., Mikhalovsky, S., Gogotsi, Y.: Adsorption of bovine serum albumin on carbon-based materials. J. Carbon Res. 4, 3 (2018)

    Article  Google Scholar 

  88. Ahmad, A.L., Shoparwe, N.F., Hanifa, N.H.E.: Equilibrium and kinetic study of bovine serum albumin (BSA) adsorption onto fabricated polyethersulfone (PES)/hydroxyapatite (HAP) adsorptive mixed matrix membrane (MMM). J. Phys. Sci. 30, 43–63 (2019)

    Article  CAS  Google Scholar 

  89. Geçgel, Ü., Üner, O.: Adsorption of bovine serum albumin onto activated carbon prepared from Elaeagnus stone. Bull. Chem. Soc. 32, 53 (2018)

    Article  Google Scholar 

  90. Khan, F.S.A., Mubarak, N.M., Khalid, M., Walvekar, R., Abdullah, E.C., Mazari, S.A., Nizamuddin, S., Karri, R.R.: Magnetic nanoadsorbents’ potential route for heavy metals removal—a review. Environ. Sci. Pollut. Res. 27, 24342–24356 (2020)

    Article  CAS  Google Scholar 

  91. Wadhawan, S., Jain, A., Nayyar, J., Mehta, S.K.: Role of nanomaterials as adsorbents in heavy metal ion removal from waste water: a review. J. Water Process. Eng. 33, 101038 (2020)

    Article  Google Scholar 

  92. Robati, D., Mirza, B., Ghazisaeidi, R., Rajabi, M., Moradi, O., Tyagi, I., Agarwal, S., Gupta, V.K.: Adsorption behavior of methylene blue dye on nanocomposite multi-walled carbon nanotube functionalized thiol (MWCNT-SH) as new adsorbent. J. Mol. Liq. 216, 830–835 (2016)

    Article  CAS  Google Scholar 

  93. Yari, M., Rajabi, M., Moradi, O., Yari, A., Asif, M., Agarwal, S., Gupta, V.K.: Kinetics of the adsorption of Pb(II) ions from aqueous solutions by graphene oxide and thiol functionalized graphene oxide. J. Mol. Liq. 209, 50–57 (2015)

    Article  CAS  Google Scholar 

  94. Yari, M., Norouzi, M., Mahvi, A.H., Rajabi, M., Yari, A., Moradi, O., Tyagi, I., Gupta, V.K.: Removal of Pb(II) ion from aqueous solution by graphene oxide and functionalized graphene oxide-thiol: effect of cysteamine concentration on the bonding constant. Desalin. Water Treat. 57, 11195–11210 (2015)

    Article  Google Scholar 

  95. Araújo, C.S.T., Almeida, I.L.S., Rezende, H.C., Marcionilio, S.M.L.O., Léon, J.J.L., de Matos, T.N.: Elucidation of mechanism involved in adsorption of Pb(II) onto lobeira fruit (Solanum lycocarpum) using Langmuir, Freundlich and Temkin isotherms. Microchem. J. 137, 348–354 (2018)

    Article  Google Scholar 

  96. Igberase, E., Osifo, P., Ofomaja, A.: Adsorption of metal ions by microwave assisted grafting of cross-linked chitosan beads. Equilibrium, isotherm, thermodynamic and desorption studies. Appl. Organomet. Chem. 32, e4131 (2017)

    Article  Google Scholar 

  97. Vu, H.C., Dwivedi, A.D., Le, T.T., Seo, S.-H., Kim, E.-J., Chang, Y.-S.: Magnetite graphene oxide encapsulated in alginate beads for enhanced adsorption of Cr(VI) and As(V) from aqueous solutions: role of crosslinking metal cations in pH control. Chem. Eng. J. 307(220), 229 (2017)

    Google Scholar 

  98. Hayati, B., Maleki, A., Najafi, F., Gharibi, F., McKay, G., Gupta, V.K., Harikaranahalli Puttaiah, S., Marzban, N.: Heavy metal adsorption using PAMAM/CNT nanocomposite from aqueous solution in batch and continuous fixed bed systems. Chem. Eng. J. 346, 258–270 (2018)

    Article  CAS  Google Scholar 

  99. Lancini, G., Parenti, F.: Antibiotics: An Integrated View. Springer Science & Business Media, Berlin (2013)

    Google Scholar 

  100. Korzybski, T., Kowszyk-Gindifer, Z., Kurylowicz, W.: Antibiotics: Origin, Nature and Properties. Elsevier, Amsterdam (2013)

    Google Scholar 

  101. Bhattacharjee, M.K.: Introduction to antibiotics. In: Chemistry of Antibiotics and Related Drugs, pp. 1–25. Springer, New York (2016)

    Chapter  Google Scholar 

  102. Li, L., Zheng, X., Chi, Y., Wang, Y., Sun, X., Yue, Q., Gao, B., Xu, S.: Molecularly imprinted carbon nanosheets supported TiO2: strong selectivity and synergic adsorption-photocatalysis for antibiotics removal. J. Hazard. Mater. 383, 121211 (2020)

    Article  CAS  Google Scholar 

  103. Khanday, W.A., Ahmed, M.J., Okoye, P.U., Hummadi, E.H., Hameed, B.H.: Single-step pyrolysis of phosphoric acid-activated chitin for efficient adsorption of cephalexin antibiotic. Bioresour. Technol. 280, 255–259 (2019)

    Article  CAS  Google Scholar 

  104. Shikuku, V.O., Zanella, R., Kowenje, C.O., Donato, F.F., Bandeira, N.M.G., Prestes, O.D.: Single and binary adsorption of sulfonamide antibiotics onto iron-modified clay: linear and nonlinear isotherms, kinetics, thermodynamics, and mechanistic studies. Appl. Water Sci. 8, 1–12 (2018)

    Article  CAS  Google Scholar 

  105. Zhang, H., Wang, J., Zhou, B., Zhou, Y., Dai, Z., Zhou, Q., Chriestie, P., Luo, Y.: Enhanced adsorption of oxytetracycline to weathered microplastic polystyrene: kinetics, isotherms and influencing factors. Environ Pollut. 243, 1550–1557 (2018)

    Article  CAS  Google Scholar 

  106. Rajabi, M., Najafi, F., Moradi, O., Mirza, B., Thakur, V.K.: Nanopolymers: graphene and functionalization. In: Biopolymer Grafting, pp. 365–407. Elsevier, Amsterdam (2018)

    Chapter  Google Scholar 

  107. Jang, H.M., Yoo, S., Choi, Y.-K., Park, S., Kan, E.: Adsorption isotherm, kinetic modeling and mechanism of tetracycline on Pinus taeda-derived activated biochar. Bioresour. Technol. 259, 24–31 (2018)

    Article  CAS  Google Scholar 

  108. Ma, G., Ms, K.: The effect of pesticides pollution on our life and environment. J. Health Pollut. 04, 1–2 (2016)

    Google Scholar 

  109. Li, H., Wang, F., Li, J., Deng, S., Zhang, S.: Adsorption of three pesticides on polyethylene microplastics in aqueous solutions: kinetics, isotherms, thermodynamics, and molecular dynamics simulation. Chemosphere 264, 128556 (2021)

    Article  CAS  Google Scholar 

  110. Lan, T., Cao, F., Cao, L., Wang, T., Yu, C., Wang, F.: A comparative study on the adsorption behavior and mechanism of pesticides on agricultural film microplastics and straw degradation products. Chemosphere 303, 135058 (2022)

    Article  CAS  Google Scholar 

  111. Motaghi, H., Arabkhani, P., Parvinnia, M., Asfaram, A.: Simultaneous adsorption of cobalt ions, azo dye, and imidacloprid pesticide on the magnetic chitosan/activated carbon@UiO-66 bio-nanocomposite: Optimization, mechanisms, regeneration, and application. Sep. Purif. Technol. 284, 120258 (2022)

    Article  CAS  Google Scholar 

  112. Farghali, R.A., Sobhi, M., Gaber, S.E., Ibrahim, H., Elshehy, E.A.: Adsorption of organochlorine pesticides on modified porous Al30/bentonite: kinetic and thermodynamic studies. Arab. J. Chem. 13, 6730–6740 (2020)

    Article  CAS  Google Scholar 

  113. Ali, I., Alharbi, O.M.L., Alothman, Z.A., Al-Mohaimeed, A.M., Alwarthan, A.: Modeling of fenuron pesticide adsorption on CNTs for mechanistic insight and removal in water. Environ. Res. 170, 389–397 (2019)

    Article  CAS  Google Scholar 

  114. Sharma, S., Sharma, G., Kumar, A., AlGarni, T.S., Naushad, M., Alothman, Z.A., Stadler, F.J.: Adsorption of cationic dyes onto carrageenan and itaconic acid-based superabsorbent hydrogel: synthesis, characterization and isotherm analysis. J. Hazard. Mater. 421, 126729 (2022)

    Article  CAS  Google Scholar 

  115. Fu, J., Zhu, J., Wang, Z., Wang, Y., Wang, S., Yan, R., Xu, Q.: Highly-efficient and selective adsorption of anionic dyes onto hollow polymer microcapsules having a high surface-density of amino groups: Isotherms, kinetics, thermodynamics and mechanism. J. Colloid Interface Sci. 542, 123–135 (2019)

    Article  CAS  Google Scholar 

  116. Rahmati, M., Mozafari, M.: Protein adsorption on polymers. Mater. Today Commun. 17, 527–540 (2018)

    Article  CAS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

MR, S, IT: conceptualization; project administration; and supervision. MR, S, RRK, MC, SC, PK: data curation; formal analysis; software; visualization. IT, RRK, S, SK, PS, NMM: investigation; methodology, software, validation; visualization. All authors: writing—original draft; writing—review and editing.

Corresponding author

Correspondence to Inderjeet Tyagi.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajabi, M., Keihankhadiv, S., Suhas et al. Comparison and interpretation of isotherm models for the adsorption of dyes, proteins, antibiotics, pesticides and heavy metal ions on different nanomaterials and non-nano materials—a comprehensive review. J Nanostruct Chem 13, 43–65 (2023). https://doi.org/10.1007/s40097-022-00509-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40097-022-00509-x

Keywords

Navigation