Skip to main content
Log in

Gelatin/cellulose nanofiber-based functional films added with mushroom-mediated sulfur nanoparticles for active packaging applications

  • Original Research
  • Published:
Journal of Nanostructure in Chemistry Aims and scope Submit manuscript

Abstract

Enoki mushroom-mediated sulfur nanoparticles (SNP) were developed using a facile acid hydrolysis process. Enoki mushroom extract was applied as a natural stabilizing agent for SNPs. The capped SNPs showed good dispersion and stability in an aqueous solution. Enoki mushroom extract-capped SNPs were ~ 20 nm in size and approximately spherical. The XPS and FTIR analysis confirmed that mushroom extract successfully capped SNPs. The SNPs were used to fabricate the gelatin/cellulose nanofiber (CNF)-based binary functional film. The mixing of SNPs pointedly enhanced the mechanical and UV-protective properties of the film. However, the inclusion of SNPs did not meaningfully change the film's other physical properties. The SNP-added nanocomposite film displayed strong antibacterial action toward foodborne pathogenic bacteria. The gelatin/CNF-based functional films are expected to be used in active packaging applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zhang, X., Ismail, B.B., Cheng, H., Jin, T.Z., Qian, M., Arabi, S.A., Liu, D., Guo, M.: Emerging chitosan-essential oil films and coatings for food preservation—a review of advances and applications. Carbohydr. Polym. 273, 118616 (2021)

    Article  CAS  PubMed  Google Scholar 

  2. Liegeard, J., Manning, L.: Use of intelligent applications to reduce household food waste. Crit. Rev. Food Sci. Nutr. 60, 1048–1061 (2019)

    Article  PubMed  Google Scholar 

  3. Qian, M., Liu, D., Zhang, X., Yin, Z., Ismail, B.B., Ye, X., Guo, M.: A review of active packaging in bakery products: applications and future trends. Trends Food Sci. Technol. 114, 459–471 (2021)

    Article  CAS  Google Scholar 

  4. Omerović, N., Djisalov, M., Živojević, K., Mladenović, M., Vunduk, J., Milenković, I., Knežević, N.Ž, Gadjanski, I., Vidić, J.: Antimicrobial nanoparticles and biodegradable polymer composites for active food packaging applications. Compr. Rev. Food Sci. Food Saf. 20, 2428–2454 (2021)

    Article  PubMed  Google Scholar 

  5. Roy, S., Priyadarshi, R., Ezati, P., Rhim, J.-W.: Curcumin and its uses in active and smart food packaging applications—a comprehensive review. Food Chem. 375, 131885 (2022)

    Article  CAS  PubMed  Google Scholar 

  6. Matthews, C., Moran, F., Jaiswal, A.K.: A review on European union’s strategy for plastics in a circular economy and its impact on food safety. J. Clean. Prod. 283, 125263 (2020)

    Article  Google Scholar 

  7. Mohamed, S.A.A., El-Sakhawy, M., El-Sakhawy, M.A.-M.: Polysaccharides, protein and lipid-based natural edible films in food packaging: a review. Carbohydr. Polym. 238, 116178 (2020)

    Article  CAS  PubMed  Google Scholar 

  8. Hanani, Z.A.N., Yee, F.C., Nor-Khaizura, M.A.R.: Effect of pomegranate (Punica granatum L.) peel powder on the antioxidant and antimicrobial properties of fish gelatin films as active packaging. Food Hydrocoll. 89, 253–259 (2019)

    Article  CAS  Google Scholar 

  9. Roy, S., Rhim, J.W.: Preparation of antimicrobial and antioxidant gelatin/curcumin composite films for active food packaging application. Colloids Surf. B. 188, 110761 (2020)

    Article  CAS  Google Scholar 

  10. Alfaro, A.T., Balbinot, E., Weber, C.I., Tonial, I.B., Machado-Lunkes, A.: Fish gelatin: characteristics, functional properties, applications and future potentials. Food Eng. Rev. 7, 33–44 (2014)

    Article  Google Scholar 

  11. Roy, S., Rhim, J.-W.: Fabrication of bioactive binary composite film based on gelatin/chitosan incorporated with cinnamon essential oil and rutin. Colloids Surf. B. 204, 111830 (2021)

    Article  CAS  Google Scholar 

  12. Roy, S., Rhim, J.-W.: Fabrication of cellulose nanofiber-based functional color indicator film incorporated with shikonin extracted from Lithospermum erythrorhizon root. Food Hydrocoll. 114, 106566 (2021)

    Article  CAS  Google Scholar 

  13. Kim, H.-J., Roy, S., Rhim, J.-W.: Effects of various types of cellulose nanofibers on the physical properties of the CNF-based films. J. Environ. Chem. Eng. 9, 106043 (2021)

    Article  CAS  Google Scholar 

  14. Kwak, H.W., You, J., Lee, M.E., Jin, H.-J.: Prevention of cellulose nanofibril agglomeration during dehydration and enhancement of redispersibility by hydrophilic gelatin. Cellulose 26, 4357–4369 (2019)

    Article  CAS  Google Scholar 

  15. Campodoni, E., Montanari, M., Dozio, S.M., Heggset, E.B., Panseri, S., Montesi, M., Tampieri, A., Syverud, K., Sandri, M.: Blending gelatin and cellulose nanofibrils: biocomposites with tunable degradability and mechanical behavior. Nanomaterials 10, 1–18 (2020)

    Article  Google Scholar 

  16. Priyadarshi, R., Roy, S., Ghosh, T., Biswas, D., Rhim, J.-W.: Antimicrobial nanofillers reinforced biopolymer composite films for active food packaging applications—a review. Sustain. Mater. Technol (2022). https://doi.org/10.1016/j.susmat.2001.e00353

    Article  Google Scholar 

  17. Hoseinnejad, M., Jafari, S.M., Katouzian, I.: Inorganic and metal nanoparticles and their antimicrobial activity in food packaging applications. Crit. Rev. Microbiol. 44, 161–181 (2018)

    Article  CAS  PubMed  Google Scholar 

  18. Jafarzadeh, S., Jafari, S.M.: Impact of metal nanoparticles on the mechanical, barrier, optical and thermal properties of biodegradable food packaging materials. Crit. Rev. Food Sci. Nutr. 61, 2640–2658 (2021)

    Article  CAS  PubMed  Google Scholar 

  19. Nikolic, M.V., Vasiljevic, Z.Z., Auger, S., Vidic, J.: Metal oxide nanoparticles for safe active and intelligent food packaging. Trends in Food Sci. Technol. 116, 655–668 (2021)

    Article  CAS  Google Scholar 

  20. Roy, S., Rhim, J.-W.: Fabrication of chitosan-based functional nanocomposite films: effect of quercetin-loaded chitosan nanoparticles. Food Hydrocoll. 121, 107065 (2021)

    Article  CAS  Google Scholar 

  21. Roy, S., Shankar, S., Rhim, J.-W.: Melanin-mediated synthesis of silver nanoparticle and its use for the preparation of carrageenan-based antibacterial films. Food Hydrocoll. 88, 237–246 (2019)

    Article  CAS  Google Scholar 

  22. Paralikar, P., Ingle, A.P., Tiwari, V., Golinska, P., Dahm, H., Rai, M.: Evaluation of antibacterial efficacy of sulfur nanoparticles alone and in combination with antibiotics against multidrug-resistant uropathogenic bacteria. J. Envir. Sci. Heal A. 54, 381–390 (2019)

    Article  CAS  Google Scholar 

  23. Priyadarshi, R., Roy, S., Rhim, J.-W.: Enhanced functionality of green synthesized sulfur nanoparticles using kiwifruit (Actinidia deliciosa) peel polyphenols as capping agents. J. Nanostruct. Chem. (2021). https://doi.org/10.1007/S40097-021-00422-9

    Article  Google Scholar 

  24. Chaudhuri, R.G., Paria, S.: Synthesis of sulfur nanoparticles in aqueous surfactant solutions. J. Colloid. Interf. Sci. 343, 439–446 (2010)

    Article  CAS  Google Scholar 

  25. Kim, S.-M., Roy, S., Yoon, K.S., Rhim, J.-W.: Preparation of low-density polyethylene- and poly(lactide)/poly(butylene adipate-co-terephthalate)-based antibacterial films integrated with elemental sulfur and sulfur nanoparticles. Packag. Technol. Sci. 34, 505–516 (2021)

    Article  CAS  Google Scholar 

  26. Shankar, S., Rhim, J.-W.: Preparation of sulfur nanoparticle-incorporated antimicrobial chitosan films. Food Hydrocoll. 82, 116–123 (2018)

    Article  CAS  Google Scholar 

  27. Priyadarshi, R., Kim, H.J., Rhim, J.-W.: Effect of sulfur nanoparticles on properties of alginate-based films for active food packaging applications. Food Hydrocoll. 110, 106155 (2021)

    Article  CAS  Google Scholar 

  28. Roy, S., Rhim, J.-W.: Carboxymethyl cellulose-based antioxidant and antimicrobial active packaging film incorporated with curcumin and zinc oxide. Int. J. Biol. Macromol. 148, 666–676 (2020)

    Article  CAS  PubMed  Google Scholar 

  29. Philip, D.: Biosynthesis of Au, Ag, and Au-Ag nanoparticles using edible mushroom extract. Spectrochim Acta A. 73, 374–381 (2009)

    Article  Google Scholar 

  30. Dai, L., Zhang, J., Cheng, F.: Effects of starches from different botanical sources and modification methods on physicochemical properties of starch-based edible films. Int. J. Biol. Macromol. 132, 897–905 (2019)

    Article  CAS  PubMed  Google Scholar 

  31. Roy Choudhury, S., Mandal, A., Ghosh, M., Basu, S., Chakravorty, D., Goswami, A.: Investigation of antimicrobial physiology of orthorhombic and monoclinic nanoallotropes of sulfur at the interface of transcriptome and metabolome. Appl. Microbiol. Biotechnol. 97, 5965–5978 (2013)

    Article  CAS  PubMed  Google Scholar 

  32. Shankar, S., Pangeni, R., Park, J.W., Rhim, J.-W.: Preparation of sulfur nanoparticles and their antibacterial activity and cytotoxic effect. Mater. Sci. Eng. C. 92, 508–517 (2018)

    Article  CAS  Google Scholar 

  33. Ghosh, S., Roy, S., Naskar, J., Kole, R.K.: Process optimization for biosynthesis of mono and bimetallic alloy nanoparticle catalysts for degradation of dyes in individual and ternary mixture. Sci. Rep. 10, 1–14 (2020)

    Article  Google Scholar 

  34. Kim, Y.H., Kim, G.H., Yoon, K.S., Shankar, S., Rhim, J.-W.: Comparative antibacterial and antifungal activities of sulfur nanoparticles capped with chitosan. Microb. Pathog. 144, 104178 (2020)

    Article  CAS  PubMed  Google Scholar 

  35. Roy, S., Rhim, J.-W.: Gelatin/agar-based functional film integrated with Pickering emulsion of clove essential oil stabilized with nanocellulose for active packaging applications. Colloids Surf. A. 627, 127220 (2021)

    Article  CAS  Google Scholar 

  36. Roy, S., Rhim, J.-W.: Preparation of pectin/agar-based functional films integrated with zinc sulfide nano petals for active packaging applications. Colloids Surf. B. 207, 111999 (2021)

    Article  CAS  Google Scholar 

  37. Yun, Y.H., Youn, H.G., Shin, J.Y., Yoon, S.D.: Preparation of functional chitosan-based nanocomposite films containing ZnS nanoparticles. Int. J. Biol. Macromol. 104, 1150–1157 (2017)

    Article  CAS  PubMed  Google Scholar 

  38. Roy, S., Kim, H.C., Panicker, P.S., Rhim, J.-W., Kim, J.: Cellulose nanofiber-based nanocomposite films reinforced with zinc oxide nanorods and grapefruit seed extract. Nanomaterials 11, 877 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2019R1A2C2084221).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Whan Rhim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5423 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, S., Rhim, JW. Gelatin/cellulose nanofiber-based functional films added with mushroom-mediated sulfur nanoparticles for active packaging applications. J Nanostruct Chem 12, 979–990 (2022). https://doi.org/10.1007/s40097-022-00484-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40097-022-00484-3

Keywords

Navigation