Skip to main content

Advertisement

Log in

Biomass gasification in a double-tapered bubbling fluidized bed reactor using preheated air

  • Original Research
  • Published:
International Journal of Energy and Environmental Engineering Aims and scope Submit manuscript

Abstract

Production of clean energy from biomass through thermochemical conversion techniques has gained substantial momentum over the last decades. The biomass gasification is a noteworthy thermochemical conversion technique due to its varied advantages like feed material flexibility and ease of operation. Here in this work, the effects of applying air preheating for the gasification of biomass (dry wood) under varied particle size (100, 300 and 800 µm) and its outcome are simulated using ANSYS FLUENT 14.0. Two-fluid model is used for the simulation study with distinct phases—air (Phase-1) and wood (Phase-2). The boundary conditions are applied, and the simulation results obtained are matched with available studies. The inlet velocity of the gasifying medium is varied from 0-3m/s analogous to the bubbling fluidized bed velocity range. The gasification temperature ranges are 973, 1073 and 1173 K. The simulations are conducted with and without preheated air in a double-tapered bubbling fluidized bed reactor having taper angle of 5°.The fluid velocity and taper angle play an essential role in controlling the solid particle suspension rate inside the reactor chamber. However, the air preheating maintains the overall reactor temperature that enhances the solid–gas conversion rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

CFD:

Computational fluid dynamics

DTBFBR:

Double tapered bubbling fluidized bed reactor

PCFB:

Pressurised circulating fluidized bed

g:

Acceleration due to gravity (ms-2)

Hg :

Specific enthalpy of gas (kJ/kg)

\(\nabla\) :

Gradient operator

T:

Mean temperature (K)

\(\mathop k\nolimits_{i}\) :

Turbulent kinetic energy (m2s-2) of species i

\(\mathop {\vec{v}}\nolimits_{S}\) :

Solid fluctuation velocity (m/s)

\(\mathop {\vec{v}}\nolimits_{g}\) :

Gas fluctuation velocity (m/s)

S:

Source term for heat released

g:

Gas phase

S:

Solid phase

εo:

Fixed bed voidage (-)

ρ sus :

Suspension density (kgm-3)

ρ s :

Solid density (kgm-3)

ρ g :

Gas density (kgm-3)

\(\mathop {\rm P}\nolimits_{g}\) :

Gas phase pressure

\(\mathop {\rm P}\nolimits_{s}\) :

Solid phase pressure

\(\overline{\overline{{\mathop \tau \nolimits_{g} }}}\) :

Gas phase stress tensor

\(\overline{\overline{{\mathop \tau \nolimits_{s} }}}\) :

Solid phase stress tensor

dp :

Particle diameter

\(\varepsilon\) :

Volume fraction

C:

Carbon

O2 :

Oxygen

H:

Hydrogen

CH4 :

Methane

CO2 :

Carbon dioxide

CO:

Carbon monoxide

H2O:

Water

References

  1. Sansaniwal, S.K., Pal, K., Rosen, M.A., Tyagi, S.K.: Recent advances in the development of biomass gasi fi cation technology : a comprehensive review. Renew. Sustain. Energy Rev. 72, 363–384 (2017). https://doi.org/10.1016/j.rser.2017.01.038

    Article  Google Scholar 

  2. Heidenreich, S., Foscolo, P.U.: New concepts in biomass gasification. Prog. Energy Combust. Sci. 46, 72–95 (2015). https://doi.org/10.1016/j.pecs.2014.06.002

    Article  Google Scholar 

  3. Kundu, K., Chatterjee, A., Bhattacharyya, T.: Thermochemical Conversion of Biomass to Bioenergy : A Review. (2018)

  4. Puig-arnavat, M., Bruno, J.C., Coronas, A.: Review and analysis of biomass gasification models. Renew. Sustain. Energy Rev. 14, 2841–2851 (2010). https://doi.org/10.1016/j.rser.2010.07.030

    Article  Google Scholar 

  5. Kaltschmitt, M.: Biomass as Renewable Source of Energy : Possible Conversion Routes. (2019)

  6. Atnaw, S.M., Sulaiman, S.A., Yusup, S.: Biomass gasification. Springer, Cham (2017)

    Book  Google Scholar 

  7. Klemm, M.: Small scale biomass gasification for rural electrification. Springer, New York (2019)

    Book  Google Scholar 

  8. Sau, D.C., Biswal, K.C.: Computational fluid dynamics and experimental study of the hydrodynamics of a gas – solid tapered fluidized bed. Appl. Math. Model. 35, 2265–2278 (2011). https://doi.org/10.1016/j.apm.2010.11.037

    Article  MathSciNet  MATH  Google Scholar 

  9. Rasteh, M., Farhadi, F., Bahramian, A.: Hydrodynamic characteristics of gas – solid tapered fl uidized beds : experimental studies and empirical models. Powder Technol. 283, 355–367 (2015). https://doi.org/10.1016/j.powtec.2015.06.002

    Article  Google Scholar 

  10. Schulzke, T.: Biomass gasification : conversion of forest residues into heat, electricity and base chemicals. Chem. Pap. 73, 1833–1852 (2019). https://doi.org/10.1007/s11696-019-00801-1

    Article  Google Scholar 

  11. Pattanayak, S., Hauchhum, L., Loha, C., Sailo, L., Mishra, L.: Experimental investigation on pyrolysis kinetics, reaction mechanisms and thermodynamic parameters of biomass and tar in N2 atmosphere. Sustain. Energy Technol. Assessments. 48, 101632 (2021). https://doi.org/10.1016/j.seta.2021.101632

    Article  Google Scholar 

  12. Pattanayak, S., Hauchhum, L., Loha, C., Sailo, L.: Selection criteria of appropriate bamboo based biomass for thermochemical conversion process. Biomass Convers. Biorefinery. 10, 401–407 (2020). https://doi.org/10.1007/s13399-019-00421-5

    Article  Google Scholar 

  13. Wu, K.T., Chein, R.Y.: Modeling of biomass gasification with preheated air at high temperatures. Energy Procedia 75, 214–219 (2015). https://doi.org/10.1016/j.egypro.2015.07.307

    Article  Google Scholar 

  14. Kalita, P., Baruah, D.: Investigation of biomass gasi fi er product gas composition and its characterization. Springer, Singapore (2018)

    Google Scholar 

  15. Mallick, D., Buragohain, B., Mahanta, P.: Gasi fi cation of Mixed Biomass : Analysis Using Equilibrium , Semi-equilibrium , and Kinetic Models. 223–241 (2018)

  16. Tavares, R., Monteiro, E., Tabet, F., Rouboa, A.: Numerical investigation of optimum operating conditions for syngas and hydrogen production from biomass gasi fi cation using Aspen Plus. Renew. Energy. 146, 1309–1314 (2020). https://doi.org/10.1016/j.renene.2019.07.051

    Article  Google Scholar 

  17. Zhang, Z., Pang, S.: Experimental investigation of biomass devolatilization in steam gasification in a dual fluidised bed gasifier. Fuel. 188, 628–635 (2017). https://doi.org/10.1016/j.fuel.2016.10.074

    Article  Google Scholar 

  18. Watson, J., Zhang, Y., Si, B., Chen, W., Souza, R.. De.: Gasi fi cation of biowaste : a critical review and outlooks. Renew. Sustain. Energy Rev. 83, 1–17 (2018). https://doi.org/10.1016/j.rser.2017.10.003

    Article  Google Scholar 

  19. Sharma, S., Sheth, P.N.: Air – steam biomass gasification : experiments, modeling and simulation. Energy Convers. Manag. 110, 307–318 (2016). https://doi.org/10.1016/j.enconman.2015.12.030

    Article  Google Scholar 

  20. Doherty, W., Reynolds, A., Kennedy, D.: The effect of air preheating in a biomass CFB gasifier using ASPEN plus simulation the effect of air preheating in a biomass CFB gasifier using ASPEN plus simulation. Biomass Bioenergy (2009). https://doi.org/10.1016/j.biombioe.2009.05.004.This

    Article  Google Scholar 

  21. Qi, T., Lei, T., Yan, B., Chen, G.: ScienceDirect Biomass steam gasification in bubbling fluidized bed for higher-H 2 syngas : CFD simulation with coarse grain model. Int. J. Hydrogen Energy. 44, 6448–6460 (2019). https://doi.org/10.1016/j.ijhydene.2019.01.146

    Article  Google Scholar 

  22. Kalita, P., Saha, U.K., Mahanta, P.: Effect of biomass blending on hydrodynamics and heat transfer behavior in a pressurized circulating fluidized bed unit. Int. J. Heat Mass Transf. 60, 531–541 (2013). https://doi.org/10.1016/j.ijheatmasstransfer.2013.01.043

    Article  Google Scholar 

  23. Kalita, P., Saha, U.K., Mahanta, P.: Parametric study on the hydrodynamics and heat transfer along the riser of a pressurized circulating fluidized bed unit. Exp. Therm. Fluid Sci. 44, 620–630 (2013). https://doi.org/10.1016/j.expthermflusci.2012.09.001

    Article  Google Scholar 

  24. Kalita, P., Mahanta, P., Saha, U.K.: Some studies on wall-to-bed heat transfer in a pressurized circulating fluidized bed unit. Procedia Eng. 56, 163–172 (2013). https://doi.org/10.1016/j.proeng.2013.03.103

    Article  Google Scholar 

  25. Khan, M.S., Mitra, S., Ghatage, S.V., Doroodchi, E., Joshi, J.B., Evans, G.M.: Segregation and dispersion studies in binary solid-liquid fluidised beds: a theoretical and computational study. Powder Technol. 314, 400–411 (2017). https://doi.org/10.1016/j.powtec.2016.12.070

    Article  Google Scholar 

  26. Stendardo, S., Ugo, P., Nobili, M., Scaccia, S.: High quality syngas production via steam-oxygen blown bubbling fluidised bed gasifier. Energy 103, 697 (2016). https://doi.org/10.1016/j.energy.2016.03.011

    Article  Google Scholar 

  27. Sau, D.C., Biswal, K.C.: Computational fluid dynamics and experimental study of the hydrodynamics of a gas-solid tapered fluidized bed. Appl. Math. Model. 35, 2265–2278 (2011). https://doi.org/10.1016/j.apm.2010.11.037

    Article  MathSciNet  MATH  Google Scholar 

  28. Duangkhamchan, W., Ronsse, F., Depypere, F., Dewettinck, K., Pieters, J.G.: Comparison and evaluation of interphase momentum exchange models for simulation of the solids volume fraction in tapered fluidised beds. Chem. Eng. Sci. 65, 3100–3112 (2010). https://doi.org/10.1016/j.ces.2010.02.008

    Article  Google Scholar 

  29. Gopan, G., Hauchhum, L., Kalita, P.,Pattanayak, S., Parametric study of tapered fluidized bed reactor under varied taper angle using TFM Parametric Study of Tapered Fluidized Bed Reactor Under Varied Taper Angle Using TFM. 020020, (2021)

  30. Fuchs, J.: The impact of gasification temperature on the process characteristics of sorption enhanced reforming of biomass. Biomass. Conv. Bioref. 10, 925 (2019)

    Article  Google Scholar 

  31. Campoy, M., Gómez-Barea, A., Ollero, P., Nilsson, S.: Gasification of wastes in a pilot fluidized bed gasifier. Fuel Process. Technol. 121, 63–69 (2014). https://doi.org/10.1016/j.fuproc.2013.12.019

    Article  Google Scholar 

  32. Pjontek, D., Macchi, A.: Hydrodynamic comparison of spherical and cylindrical particles in a gas-liquid-solid fluidized bed at elevated pressure and high gas holdup conditions. Powder Technol. 253, 657–676 (2014). https://doi.org/10.1016/j.powtec.2013.12.030

    Article  Google Scholar 

  33. Ku, X., Jin, H., Lin, J.: Comparison of gasification performances between raw and torrefied biomasses in an air-blown fluidized-bed gasifier. Chem. Eng. Sci. 168, 235–249 (2017). https://doi.org/10.1016/j.ces.2017.04.050

    Article  Google Scholar 

  34. Wojnicka, B.: Modelling of biomass gasification with steam. Biomass Conv Bioref 11, 1787 (2019)

    Article  Google Scholar 

  35. Gómez-Barea, A., Leckner, B.: Modeling of biomass gasification in fluidized bed. Prog. Energy Combust. Sci. 36, 444–509 (2010). https://doi.org/10.1016/j.pecs.2009.12.002

    Article  Google Scholar 

  36. Huang, Z., Zhang, J., Zhao, Y., Zhang, H., Yue, G.: Kinetic studies of char gasi fi cation by steam and CO 2 in the presence of H 2 and CO. Fuel Process. Technol. 91, 843–847 (2010). https://doi.org/10.1016/j.fuproc.2009.12.020

    Article  Google Scholar 

  37. Kaushal, P., Abedi, J., Mahinpey, N.: A comprehensive mathematical model for biomass gasification in a bubbling fluidized bed reactor. Fuel. 89, 3650–3661 (2010). https://doi.org/10.1016/j.fuel.2010.07.036

    Article  Google Scholar 

  38. Askaripour, H., Dehkordi, A.M.: Effects of initial static bed height on fractional conversion and bed pressure drop in tapered-in and tapered-out fluidized bed reactors. Int. J. Multiphase Flow 79, 50–61 (2016). https://doi.org/10.1016/j.ijmultiphaseflow.2015.08.006

    Article  MathSciNet  Google Scholar 

  39. Chen, L., Yang, X., Li, G., Li, X., Snape, C.: Prediction of bubble fluidisation during chemical looping combustion using CFD simulation. Comput. Chem. Eng. 99, 82–95 (2017). https://doi.org/10.1016/j.compchemeng.2017.01.009

    Article  Google Scholar 

  40. Ranganathan, P., Gu, S.: Computational fluid dynamics modelling of biomass fast pyrolysis in fluidised bed reactors, focusing different kinetic schemes. Bioresour. Technol. 213, 333–341 (2015). https://doi.org/10.1016/j.biortech.2016.02.042

    Article  Google Scholar 

  41. Prins, M.J.: Thermodynamic analysis of biomass gasification and torrefaction. (2005)

  42. Di Natale, F., Nigro, R.: An experimental procedure to estimate tube erosion rates in bubbling fluidised beds. Powder Technol. 287, 96–107 (2016). https://doi.org/10.1016/j.powtec.2015.10.001

    Article  Google Scholar 

  43. Mirmoshtaghi, G., Li, H., Thorin, E., Dahlquist, E.: Evaluation of different biomass gasification modeling approaches for fluidized bed gasifiers. Biomass and Bioenergy. 91, 69–82 (2016). https://doi.org/10.1016/j.biombioe.2016.05.002

    Article  Google Scholar 

  44. Feng, F., Song, G., Shen, L., Xiao, J.: Simulation of bio-syngas production from biomass gasification via pressurized interconnected fluidized beds. (2014). doi: https://doi.org/10.1007/978-3-642-37922-2

  45. Thakkar, M., Mohanty, P., Shah, M., Singh, V.: An Overview of Biomass Gasification. 147–176

  46. Khani, M.H.: Models for prediction of hydrodynamic characteristics of gas – solid tapered and mini-tapered fl uidized beds. Powder Technol. 205, 224–230 (2011). https://doi.org/10.1016/j.powtec.2010.09.018

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gokul Gopan.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gopan, G., Hauchhum, L., Kalita, P. et al. Biomass gasification in a double-tapered bubbling fluidized bed reactor using preheated air. Int J Energy Environ Eng 13, 643–656 (2022). https://doi.org/10.1007/s40095-021-00451-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40095-021-00451-8

Keywords

Navigation