Skip to main content

Advertisement

Log in

Modelling of biomass gasification with steam

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

A model of biomass steam gasification in a dual fluidised bed (DFB) reactor has been developed. The model involves two stages: pyrolysis of feedstock and gasification of pyrolysis products. The biomass pyrolysis stage is described according to the multiple reactions of first-order kinetics. The model allows one to compute 8 gas species as well as char, tar and BTX yields. Gasification reactions as the second stage of the conversion process are described according to the pseudo-equilibrium approach and include the steam gasification of unreacted char and tar and secondary gas phase reactions. Based on the compositions of products, the mass and heat balances of the described process are calculated. The developed model allows for the prediction of gasification product yields and gas composition and for the calculation of heat demand for the entire process. In addition, the model enables one to predict key parameters of process performance, e.g., cold gas efficiency and steam- and fuel-related conversion rates. The model was validated with experimental results of three gasification test runs conducted with a 100 kW DFB pilot plant based at TU Wien.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Doherty W (2014) Modelling of biomass gasification integrated with a solid oxide fuel cell system. Doctoral Thesis, Dublin Institute of Technology. https://doi.org/10.21427/D76P5V

  2. Schmid JC, Wolfesberger U, Koppatz S, Pfeifer C, Hofbauer H (2012) Variation of feedstock in a dual fluidized bed steam gasifier—influence on product gas, tar content, and composition. Environ Prog Sustain Energy 31:205–215. https://doi.org/10.1002/ep.11607

    Article  Google Scholar 

  3. Benedikt F, Fuchs J, Schmid JC, Müller S, Hofbauer H (2017) Advanced dual fluidized bed steam gasification of wood and lignite with calcite as bed material. Korean J Chem Eng 34:2548–2558. https://doi.org/10.1007/s11814-017-0141-y

    Article  Google Scholar 

  4. Baruah D, Baruah DC (2014) Modeling of biomass gasification: a review. Renew Sust Energ Rev 39:806–815. https://doi.org/10.1016/j.rser.2014.07.129

    Article  Google Scholar 

  5. Puig-Arnavat M, Bruno JC, Coronas A (2010) Review and analysis of biomass gasification models. Renew Sust Energ Rev 14:2841–2851. https://doi.org/10.1016/j.rser.2010.07.030

    Article  Google Scholar 

  6. Goud Burra KR, Gupta AK (2019) Modeling of biomass pyrolysis kinetics using sequential multi-step reaction model. Fuel 237:1057–1067. https://doi.org/10.1016/j.fuel.2018.09.097

    Article  Google Scholar 

  7. White JE, Catallo WJ, Legendre BL (2011) Biomass pyrolysis kinetics: a comparative critical review with relevant agricultural residue case studies. J Anal Appl Pyrolysis 91:1–33. https://doi.org/10.1016/j.jaap.2011.01.004

    Article  Google Scholar 

  8. Ściążko M (2010) Modele klasyfikacji węgla w ujęciu termodynamicznym i kinetycznym. Wydawnictwa Akademii Górniczo-Hutniczej im. Stanisława Staszica w Krakowie, Kraków

    Google Scholar 

  9. Li L, Huang S, Wu S, Wu Y, Gao J, Gu J, Qin X (2015) Fuel properties and chemical compositions of the tar produced from a 5 MW industrial biomass gasification power generation plant. J Energy Inst 88:126–135. https://doi.org/10.1016/j.joei.2014.07.002

    Article  Google Scholar 

  10. Li X, Grace JR, Watkinson AP, Lim CJ, Ergüdenler A (2001) Equilibrium modeling of gasification: a free energy minimization approach and its application to a circulating fluidized bed coal gasifier. Fuel. 80:195–207. https://doi.org/10.1016/S0016-2361(00)00074-0

    Article  Google Scholar 

  11. Kirnbauer F, Wilk V, Hofbauer H (2013) Performance improvement of dual fluidized bed gasifiers by temperature reduction: the behavior of tar species in the product gas. Fuel. 108:534–542. https://doi.org/10.1016/j.fuel.2012.11.065

    Article  Google Scholar 

  12. Schmid JC, Kolbitsch M, Fuchs J, Benedikt F, Müller S, Hofbauer H (2016) Steam gasification of exhausted olive pomace with a dual fluidized bed pilot plant at TU Wien, Vienna

  13. Mauerhofer AM, Wojnicka B, Eberharter M, Aghaalikhani A, Schmid JC (2017) Change of product gas composition over height inside the steam blown gasification reactor of a dual fluidized bed reactor system, Technical Report of Scientific Research intern for TU Wien and for AGH University of Science and Technology, Krakow, Poland

  14. Masnadi MS, Habibi R, Kopyscinski J, Hill JM, Bi X, Lim CJ, Ellis N, Grace JR (2014) Fuel characterization and co-pyrolysis kinetics of biomass and fossil fuels. Fuel. 117:1204–1214. https://doi.org/10.1016/j.fuel.2013.02.006

    Article  Google Scholar 

  15. Aboyade AO, Görgens JF, Carrier M, Meyer EL, Knoetze JH (2013) Thermogravimetric study of the pyrolysis characteristics and kinetics of coal blends with corn and sugarcane residues. Fuel Process Technol 106:310–320. https://doi.org/10.1016/j.fuproc.2012.08.014

    Article  Google Scholar 

  16. Slopiecka K, Bartocci P, Fantozzi F (2012) Thermogravimetric analysis and kinetic study of poplar wood pyrolysis. Appl Energy 97:491–497. https://doi.org/10.1016/j.apenergy.2011.12.056

    Article  Google Scholar 

  17. Gómez Díaz CJ (2006) Understanding biomass pyrolysis kinetics: improved modeling based on comprehensive thermokinetic analysis. Doctoral Thesis, Politècnica de Catalunya

  18. Miller RS, Bellan J (1997) A generalized biomass pyrolysis model based on superimposed cellulose, hemicelluloseand liqnin kinetics. Combust Sci Technol 126:97–137. https://doi.org/10.1080/00102209708935670

    Article  Google Scholar 

  19. Huang YF, Kuan WH, Chiueh PT, Lo SL (2011) A sequential method to analyze the kinetics of biomass pyrolysis. Bioresour Technol 102:9241–9246. https://doi.org/10.1016/j.biortech.2011.07.015

    Article  Google Scholar 

  20. Sonoyama N, Hayashi J (2013) Characterisation of coal and biomass based on kinetic parameter distributions for pyrolysis. Fuel. 114:206–215. https://doi.org/10.1016/j.fuel.2012.04.023

    Article  Google Scholar 

  21. Mehrabian R, Scharler R, Obernberger I (2012) Effects of pyrolysis conditions on the heating rate in biomass particles and applicability of TGA kinetic parameters in particle thermal conversion modelling. Fuel. 93:567–575. https://doi.org/10.1016/j.fuel.2011.09.054

    Article  Google Scholar 

  22. Barneto AG, Carmona JA, Conesa Ferrer JA, Díaz Blanco MJ (2010) Kinetic study on the thermal degradation of a biomass and its compost: composting effect on hydrogen production. Fuel. 89:462–473. https://doi.org/10.1016/j.fuel.2009.09.024

    Article  Google Scholar 

  23. Yu J, Yao C, Zeng X, Geng S, Dong L, Wang Y, Gao S, Xu G (2011) Biomass pyrolysis in a micro-fluidized bed reactor: characterization and kinetics. Chem Eng J 168:839–847. https://doi.org/10.1016/j.cej.2011.01.097

    Article  Google Scholar 

  24. Sonobe T, Worasuwannarak N (2008) Kinetic analyses of biomass pyrolysis using the distributed activation energy model. Fuel. 87:414–421. https://doi.org/10.1016/j.fuel.2007.05.004

    Article  Google Scholar 

  25. Hashimoto K, Hasegawa I, Hayashi J, Mae K (2011) Correlations of kinetic parameters in biomass pyrolysis with solid residue yield and lignin content. Fuel. 90:104–112. https://doi.org/10.1016/j.fuel.2010.08.023

    Article  Google Scholar 

  26. Seo DK, Park SS, Kim YT, Hwang J, Yu TU Study of coal pyrolysis by thermo-gravimetric analysis (TGA) and concentration measurements of the evolved species. J Anal Appl Pyrolysis 92:209–216. https://doi.org/10.1016/j.jaap.2011.05.012

  27. Dupont C, Commandré JM, Gauthier P, Boissonnet G, Salvador S, Schweich D (2008) Biomass pyrolysis experiments in an analytical entrained flow reactor between 1073K and 1273K. Fuel. 87:1155–1164. https://doi.org/10.1016/j.fuel.2007.06.028

    Article  Google Scholar 

  28. Chen L, Dupont C, Salvador S, Grateau M, Boissonnet G, Schweich D (2013) Experimental study on fast pyrolysis of free-falling millimetric biomass particles between 800 °C and 1000 °C. Fuel. 106:61–66. https://doi.org/10.1016/j.fuel.2012.11.058

    Article  Google Scholar 

  29. Dupont C, Chen L, Cances J, Commandre JM, Cuoci A, Pierucci S, Ranzi E (2009) Biomass pyrolysis: kinetic modelling and experimental validation under high temperature and flash heating rate conditions. J Anal Appl Pyrolysis 85:260–267. https://doi.org/10.1016/j.jaap.2008.11.034

    Article  Google Scholar 

  30. Achladas GE (1991) Analysis of biomass pyrolysis liquids: separation and characterization of phenols. J Chromatogr A 542:263–275. https://doi.org/10.1016/S0021-9673(01)88766-5

    Article  Google Scholar 

  31. Seo DK, Park SS, Hwang J, Yu TU (2010) Study of the pyrolysis of biomass using thermo-gravimetric analysis (TGA) and concentration measurements of the evolved species. J Anal Appl Pyrolysis 89:66–73

    Article  Google Scholar 

  32. Oasmaa A, Leppämäki E, Koponen P, Levander J, Tapola E (1997) Physical characterisation of biomass-based pyrolysis liquids application of standard fuel oil analyses. VTT Publications. https://doi.org/10.1016/S0140-6701(98)97220-4

  33. Aranda Almansa G, Mourao Vilela C, Vreugdenhil BJ et al (2018) Gas analysis in gasification of biomass and waste, Guideline report, Document 1, IEA Bioenergy

  34. Tursun Y, Liu J, Xu S, Wei L, Zou W (2013) Catalytic steam gasification of lignite with olivine as solid heat carrier. Fuel. 112:641–645. https://doi.org/10.1016/j.fuel.2012.12.009

    Article  Google Scholar 

  35. Pan Y, Abulizi A, Talifu D, Tursun Y, Xu S (2019) Catalytic gasification of biomass and coal blend with Fe2O3/olivine in a decoupled triple bed. Fuel Process Technol 194:106121. https://doi.org/10.1016/j.fuproc.2019.106121

    Article  Google Scholar 

Download references

Acknowledgements

Gasification and gas cleaning group at TU Wien is gratefully acknowledged for enabling participation in gasification test runs during student internship and entitling to use the obtained results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Wojnicka.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wojnicka, B., Ściążko, M. & Schmid, J.C. Modelling of biomass gasification with steam. Biomass Conv. Bioref. 11, 1787–1805 (2021). https://doi.org/10.1007/s13399-019-00575-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-019-00575-2

Keywords

Navigation