Skip to main content

Advertisement

Log in

Copper nanoparticles and their oxides: optical, anticancer and antibacterial properties

  • Review
  • Published:
International Nano Letters Aims and scope Submit manuscript

Abstract

The remarkable link between the strength and location of the Localized Surface Plasmon Resonance (LSPR) peak and the size, shape, and density of Cu NPs has been validated by numerous investigations on the optical properties of copper NPs. The prospect of attaining Cu NPs with tunable LSPR peak may be useful for developing catalysts, biosensors, optoelectronic devices, optical devices, etc. The diversity, complexity and heterogeneity of cancer and bacteria-causing diseases have placed them among the most disheartening infections that threaten the health of humans for so many years. Investigations on copper oxide's optical, anticancer, and antibacterial properties have been carried out on a number of occasions due to their fascinating properties, which have been discovered as a potential therapeutic agent for the treatment of both cancer and bacteria-causing illnesses. Despite these established investigations, little review research has been done on the antibacterial and anticancer properties of copper NPs and their oxides. The optical properties of copper NPs and their oxides are not known to have any recorded review information. The optical characteristics of copper NPs and their efficacy in treating cancer and bacterial infections are highlighted in this review as a result. The mechanism of action of CuO NPson cancer strains and bacterial strains, challenges, and recommendations in the clinical application of copper nanomedicine were also highlighted. The evaluated studies developed copper oxide nanoparticles with enhanced optical characteristics; however, the methods and conditions used in each study's synthesis varied from study to study. Outstanding anticancer and antibacterial properties were exhibited by the studied copper oxide nanoparticles. It is clear that most approaches are still unable to bring copper nanosystems loaded with anticancer and antibacterial agents to the clinic; thus, additional work must be done to solve the major issues of the cancer epidemic and antibiotic resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Omorogbe, S.O., Ikhuoria, S.O., Ifijen, I.H., Simo, A., Aigbodion, A.I., Maaza, M.: Fabrication of monodispersed needle-sized hollow core polystyrene microspheres. In: The Minerals, Metals & Mater Soc (ed.), TMS 2019 148th Annual Meeting & Exhib Supplem Proceedin 155–164 (2019)

  2. Omorogbe, S. O., Aigbodion, A.I., Ifijen, H.I., Ogbeide-Ihama, N., Simo, A., Ikhuoria, E.U.: Low temperature synthesis of super paramagnetic Fe3O4 morphologies tuned using oleic acid as crystal growth modifier. In book: TMS, 149th Annual Meeting & Exhibition Supplem Proceedings, pp 619–631 (2020)

  3. Ifijen, I.H., Ikhuoria, E.U.: Generation of highly ordered 3D vivid monochromatic coloured photonic crystal films using evaporative induced technique. Tanzan. J. Sci. 45(3), 439449 (2019)

    Google Scholar 

  4. Ifijen, I.H., Ikhuoria, E.U.: Monodisperse polystyrene microspheres: studies on the effects of reaction parameters on particle diameter. Tanzan. J. Sci. 46(1), 19–30 (2020)

    Google Scholar 

  5. Ifijen, I.H., Ikhuoria, E.U., Omorogbe, S.O.: Correlative studies on the fabrication of poly (styrene-methyl-methacrylate-acrylic acid) colloidal crystal films. J. Dispers. Sci. Tech. 40(7), 1–8 (2018)

    Google Scholar 

  6. Ifijen, I.H., Ikhuoria, E.U., Omorogbe, S.O., Aigbodion, A.I.: Ordered colloidal crystals fabrication and studies on the properties of poly (styrene-butyl acrylate-acrylic acid) and polystyrene latexes. In: Srivatsan, T., Gupta, M. (eds.) Nanocomposites VI: nanoscience and nanotechnology in advanced composites. The Minerals, Metals & Mater Series, pp. 155–164. Springer, Cham (2019)

    Google Scholar 

  7. Ifijen, I.H., Maliki, M., Ovonramwen, O.B., Aigbodion, A.I., Ikhuoria, E.U.: Brilliant coloured monochromatic photonic crystals films generation from poly (styrene-butyl acrylate-acrylic acid) latex. J. Appl. Sci. Environ. Manag. 23(9), 1661–1664 (2019)

    CAS  Google Scholar 

  8. Ifijen, I.H., Omorogbe, S.O., Maliki, M., Odiachi, I.J., Aigbodion, A.I., Ikhuoria, E.U.: Stabilizing capability of gum arabic on the synthesis of poly (styrene-methylmethacrylate-acrylic acid) latex for the generation of colloidal crystal films. Tanzan. J. Sci. 46(2), 345–435 (2020)

    Google Scholar 

  9. Omorogbe, S.O., Ikhuoria, E.U., Igiehon, L.I., Agbonlahor, G.O., Ifijen, I.H., Aigbodion, A.I.: Characterization of sulphated cellulose nanocrystals as stabilizer for magnetite nanoparticles synthesis with improved magnetic properties. Nig. J. Mater. Sci. Eng. 7(2), 23–31 (2017)

    Google Scholar 

  10. Ifijen, I.H., Ikhuoria, E.U., Aigbodion, A.I., Omorogbe, S.O.: Impact of varying the concentration of tetraethyl-orthosilicate on the average particle diameter of monodisperse colloidal silica spheres. Chem. Sci. J. 9(1), 183–185 (2018)

    Google Scholar 

  11. Ikhuoria E.U., Ifijen I.H., Georgina O.P., Ehigie A.C., Omorogbe S.O., Aigbodion A.I.: The adsorption of heavy metals from aqueous solutions using silica microparticles synthesized from sodium silicate. In: Ni-Co 2021: The 5th Intn’l Symposium on Ni and Co, pp 195–205 (2020)

  12. Ifijen, I.H., Itua, A.B., Maliki, M., Ize-Iyamu, C.O., Omorogbe, S.O., Aigbodion, A.I., Ikhuoria, E.U.: The removal of nickel and lead ions from aqueous solutions using green synthesized silica microparticles. Heliyon 6(9), e04907 (2020)

    Article  CAS  Google Scholar 

  13. Kaushik, N., Thakkar, M.S., Snehit, S., Mhatre, M.S., Rasesh, Y., Parikh, M.S.: Biological synthesis of metallic nanoparticles. Nanomed. Nanotechnol. Biol. Med. 6, 257 (2010)

    Article  Google Scholar 

  14. Ifijen I.H., Ikhuoria E.U., Maliki M., Otabor G.O., Aigbodion A.I.: Nanostructured materials: a review on its application in water treatment. In: The Minerals, Metals & Materials Society (eds) TMS 2022 151st Annual Meeting & Exhibition Supplemental Proceedings. The Minerals, Metals & Materials Series. Springer, Cham, pp 1172–1180 (2022)

  15. Ifijen I.H., Aghedo O.N., Odiachi I.J., Omorogbe S.O., Olu E.L., Onuguh I.C.: Nanostructured Graphene Thin Films: A brief review of their fabrication techniques and corrosion protective performance. In: The Minerals, Metals & Materials Society (eds) TMS 2022 151st Annual Meeting & Exhibition Supplemental Proceedings. The Minerals, Metals & Materials Series. Springer, Cham, pp 366–377 (2022)

  16. Ifijen I.H., Maliki M., Omorogbe S.O., Ibrahim S.D.: Incorporation of metallic nanoparticles into alkyd resin: a review of their coating performance. In: The Minerals, Metals & Materials Society (eds) TMS 2022 151st Annual Meeting & Exhibition Supplemental Proceedings. The Minerals, Metals & Materials Series. Springer, Cham, pp 338–349 (2022)

  17. Ifijen, I.H., Maliki, M., Odiachi, I.J., Aghedo, O.N., Ohiocheoya, E.B.: Review on solvents-based alkyd resins and water borne alkyd resins: impacts of modification on their coating properties. Chem. Afr. (2022). https://doi.org/10.1007/s42250-022-00318-3

    Article  Google Scholar 

  18. Atale, N., Saxena, S., Nirmala, J.G., Narendhirakannan, R., Mohanty, S., Rani, V.: Synthesis and characterization of sygyzium cumini nanoparticles for its protective potential in high glucose-induced cardiac stress: a green approach. Appl. Biochem. Biotechnol. 181, 1140 (2017)

    Article  CAS  Google Scholar 

  19. Wang, Y., Yang, Q.W., Yang, Q., Zhou, T., Shi, M.F., Sun, C.X., Gao, X.X., Cheng, Y.Q., Cui, X.G., Sun, Y.H.: Cupous oxide nanoparticles inhibit prostate cancer by attenuating the stemness of cancer cells via inhibition of the Wnt signaling pathway. Int. J. Nanomed. 12, 2569 (2017)

    Article  CAS  Google Scholar 

  20. Ammara, S., Shamaila, S., Bokhari, A., Sabah, A.: Nonenzymatic glucose sensor with high performance electrodeposited nickel/copper/carbon nanotubes nanocomposite electrode. J. Phys. Chem. Solids. 120, 12–19 (2018)

    Article  CAS  Google Scholar 

  21. Ifijen, I.H., Maliki, M.: A comprehensive review on the synthesis and photothermal cancer therapy of titanium nitride nanostructures. Inorg. Nano-Metal Chem. (2022). https://doi.org/10.1080/24701556.2022.2068596

    Article  Google Scholar 

  22. Lim, E.K., Kim, T., Paik, S., Haam, S., Huh, Y.M., Lee, K.: Nanomaterials for theranostics: recent advances and future challenges. Chem. Rev. 115(1), 327–394 (2014)

    Article  Google Scholar 

  23. Verma, N., Kumar, N.: Synthesis and biomedical applications of copper oxide nanoparticles: an expanding horizon. ACS Biomater. Sci. Eng. 5(3), 1170–1188 (2019)

    Article  CAS  Google Scholar 

  24. Xie, Y., Yu, Y., Lu, L., Ma, X., Gong, L., Huang, X., Liu, G., Yu, Y.: CuO nanoparticles decorated 3D graphene nanocomposite as non-enzymatic electrochemical sensing platform for Malathion detection. J. Electroanal. Chem. 812, 82–89 (2018)

    Article  CAS  Google Scholar 

  25. Shabnam, L., Faisal, S.N., Roy, A.K., Haque, E., Minett, A.I., Gomes, V.G.: Doped graphene/Cu nanocomposite: a high sensitivity non-enzymatic glucose sensor for food. Food Chem. 221, 751–759 (2017)

    Article  CAS  Google Scholar 

  26. Meghana, S., Kabra, P., Chakraborty, S., Padmavathy, N.: Understanding the pathway of antibacterial activity of copper oxide nanoparticles. RSC Adv. 5(16), 12293–12299 (2015)

    Article  CAS  Google Scholar 

  27. Bol’basov, E.N., Lapin, I.N., Tverdokhlebov, S.I., Svetlichnyi, V.A.: Aerodynamic synthesis of biocompatible matrices and their functionalization by nanoparticles obtained by the method of laser ablation. Russ. Phys. J. 57, 293–300 (2014)

    Article  Google Scholar 

  28. Kalenskii, A.V., Zvekov, A.A., Nikitin, A.P., Ananeva, M.V.: Optical properties of copper nanoparticles. Russ. Phys. J. 58, 1098–1104 (2015)

    Article  CAS  Google Scholar 

  29. Pang, C., Li, R., Li, Z., Dong, N., Amekura, H., Wang, S., Yu, H., Wang, J., Ren, F., Ishikawa, N., Okubo, N., Chen, F.: Copper nanoparticles embedded in lithium tantalate crystals for multi-GHz lasers. ACS Appl. Nano Mater. 2(9), 5871–5877 (2019)

    Article  CAS  Google Scholar 

  30. Wu, D.J.: Oversupply of limiting cell resources and the evolution of cancer cells: a review. Front. Ecol. Evol. 9, 653622 (2021)

    Article  Google Scholar 

  31. Mohindroo, J.J., Garg, U.K., Sharma, A.K.: Optical properties of stabilized copper nanoparticles. In: AIP Conference Proceedings International Conference on Condensed Matter and Applied Physics (ICC 2015): Bikaner, India (30–31 October 2015). 1728: 020534. (2016) https://doi.org/10.1063/1.4946585.

  32. Basu, A.K.: DNA damage, mutagenesis and cancer. Int. J. Mol. Sci. 19(4), 970 (2018)

    Article  Google Scholar 

  33. Doron, S., Gorbach, S.L.: Bacterial infections: overview. Int. Encycl. Public Health 2008, 273–282 (2008)

    Article  Google Scholar 

  34. Verhoef, J., van Kessel, K., Snippe, H.: Immune response in human pathology: infections caused by bacteria, viruses, fungi, and parasites. Nijkamp Parnham’s Princ Immunopharmacol. 23, 165–178 (2019)

    Article  Google Scholar 

  35. Pells, G.P., Shiga, M.: The optical properties of copper and gold as a function of temperature. J. Phys. C: Solid State Phys. 2(10), 1835 (1969)

    Article  CAS  Google Scholar 

  36. Sarangi, B., Mishra, P.S., Behera, N.: Advances in green synthesis of ZnS nanoparticles: an overview. Mater. Sci. Semicond. Process. 147, 106723 (2022)

    Article  CAS  Google Scholar 

  37. Tilaki, R., Irajizad, A., Mahdavi, S.: Size, composition and optical properties of copper nanoparticles prepared by laser ablation in liquids. Appl. Phys. A 88, 415–419 (2007)

    Article  CAS  Google Scholar 

  38. Sadrolhosseini, A.R., Noor, A.S.B.M., Shameli, K., Mamdoohi, G., Moksin, M.M., Mahdi, M.A.: Laser ablation synthesis and optical properties of copper nanoparticles. J. Mater. Res. 28(18), 2629–2636 (2013)

    Article  CAS  Google Scholar 

  39. Ash, C., Dubec, M., Donne, K., Bashford, T.: Effect of wavelength and beam width on penetration in light-tissue interaction using computational methods. Lasers Med Sci 32(8), 1909–1918 (2017)

    Article  Google Scholar 

  40. Lukianova-Hleb, E.Y., Lapotko, D.O.: Influence of transient environmental photothermal effects on optical scattering by gold nanoparticles. Nano Lett. 9(5), 2160–2166 (2009)

    Article  CAS  Google Scholar 

  41. Wei, C., Liu, Q.: Shape-, size-, and density-tunable synthesis and optical properties of copper nanoparticles. Cryst. Eng. Commun. 19, 3254–3262 (2017)

    Article  CAS  Google Scholar 

  42. Boscarino, S., Censabella, M., Micali, M., Russo, M., Terrasi, A., Grimaldi, M.G., Ruffino, F.: Morphology, electrical and optical properties of Cu nanostructures embedded in azo: a comparison between dry and wet methods. Micromachines 13, 247 (2022)

    Article  Google Scholar 

  43. Gawande, M.B., Goswami, A., Felpin, F.X., Asefa, T., Huang, X., Silva, R., Zou, X., Zboril, R., Varma, R.S.: Cu and Cu-based nanoparticles: synthesis and applications in catalysis. Chem. Rev. 116(6), 3722–3811 (2016)

    Article  CAS  Google Scholar 

  44. Szymański, P., Frączek, T., Markowicz, M., Mikiciuk-Olasik, E.: Development of copper-based drugs, radiopharmaceuticals and medical materials. Biometals 25(6), 1089–1112 (2012)

    Article  Google Scholar 

  45. Kim, G.J., Nie, S.: Targeted cancer nanotherapy. Mater. Today 8(8), 28–33 (2005)

    Article  Google Scholar 

  46. Housman, G., Byler, S., Heerboth, S., Lapinska, K., Longacre, M., Snyder, N., Sarkar, S.: Drug resistance in cancer: an overview. Cancers 6(3), 1769–1792 (2014)

    Article  Google Scholar 

  47. Song, H., Xu, Q., Zhu, Y., Zhu, S., Tang, H., Wang, Y., Ren, H., Zhao, P., Qi, Z., Zhao, S.: Serum adsorption, cellular internalization and consequent impact of cuprous oxide nanoparticles on uveal melanoma cells: implications for cancer therapy. Nanomedicine 10(24), 3547–3562 (2015)

    Article  CAS  Google Scholar 

  48. Yang, Q., Wang, Y., Yang, Q., Gao, Y., Duan, X., Fu, Q., Chu, C., Pan, X., Cui, X., Sun, Y.: Cuprous oxide nanoparticles trigger ER stress-induced apoptosis by regulating copper trafficking and overcoming resistance to sunitinib therapy in renal cancer. Biomaterials 146, 72–85 (2017)

    Article  CAS  Google Scholar 

  49. Wang, Y., Yang, F., Zhang, H., Zi, X., Pan, X., Chen, F., Luo, W., Li, J., Zhu, H., Hu, Y.: Cuprous oxide nanoparticles inhibit the growth and metastasis of melanoma by targeting mitochondria. Cell Death Dis. 4(8), e783 (2013)

    Article  CAS  Google Scholar 

  50. Chinnathambi, A., Alahmadi, T.A., Alharbi, S.A.: Biogenesis of copper nanoparticles (Cu-NPs) using leaf extract of alliumnoeanum, antioxidant and in-vitro cytotoxicity artificial cells. Nanomed. Biotechnol. 49(1), 500–510 (2021)

    CAS  Google Scholar 

  51. Kung, M.L., Hsieh, S.L., Wu, C.C., Chu, T.H., Lin, Y.C., Yeh, B.W., Hsieh, S.: Enhanced reactive oxygen species overexpression by CuO nanoparticles in poorly differentiated hepatocellular carcinoma cells. Nanoscale 7(5), 1820–1829 (2015)

    Article  CAS  Google Scholar 

  52. Giannousi, K., Hatzivassiliou, E., Mourdikoudis, S., Vourlias, G., Pantazaki, A., Dendrinou-Samara, C.: Synthesis and biological evaluation of PEGylated CuO nanoparticles. J. Inorg. Biochem. 164, 82–90 (2016)

    Article  CAS  Google Scholar 

  53. Laha, D., Pramanik, A., Chattopadhyay, S., Kumar Dash, S., Roy, S., Pramanik, P., Karmakar, P.: Folic acid modified copper oxide nanoparticles for targeted delivery in in vitro and in vivo systems. RSC Adv. 5(83), 68169–68178 (2015)

    Article  CAS  Google Scholar 

  54. Engler, A.C., Wiradharma, N., Ong, Z.Y., Coady, D.J., Hedrick, J.L., Yang, Y.Y.: Emerging trends in macromolecular antimicrobials to fight multi-drug-resistant infections. Nano Today 7(3), 201–222 (2012)

    Article  CAS  Google Scholar 

  55. Marković, D., Deeks, C., Nunney, T., Radovanović, Ž, Radoičić, M., Šaponjić, Z., Radetić, M.: Antibacterial activity of Cu-based nanoparticles synthesized on the cotton fabrics modified with polycarboxylic acids. Carbohydr. Polym. 200, 173–182 (2018)

    Article  Google Scholar 

  56. El Saeed, A.M., El-Fattah, M.A., Azzam, A.M., Dardir, M.M., Bader, M.M.: Synthesis of cuprous oxide epoxy nanocomposite as an environmentally antimicrobial coating. Int. J. Biol. Macromol. 89, 190–197 (2016)

    Article  Google Scholar 

  57. Kaweeteerawat, C., Chang, C.H., Roy, K.R., Liu, R., Li, R., Toso, D., Fischer, H., Ivask, A., Ji, Z., Zink, J.I.: Cu nanoparticles have different impacts in Escherichia coli and Lactobacillus brevis than their microsized and ionic analogues. ACS Nano 9(7), 7215–7225 (2015)

    Article  CAS  Google Scholar 

  58. Azam, A., Ahmed, A.S., Oves, M., Khan, M., Memic, A.: Size-dependent antimicrobial properties of CuO nanoparticles against Gram-positive and-negative bacterial strains. Int. J. Nanomed. 7, 3527 (2012)

    Article  CAS  Google Scholar 

  59. Pang, H., Gao, F., Lu, Q.: Morphology effect on antibacterial activity of cuprous oxide. Chem. Commun. 9, 1076–1078 (2009)

    Article  Google Scholar 

  60. Gilbertson, L.M., Albalghiti, E.M., Fishman, Z.S., Perreault, F., Corredor, C., Posner, J.D., Elimelech, M., Pfefferle, L.D., Zimmerman, J.B.: Shape-dependent surface reactivity and antimicrobial activity of nano-cupric oxide. Environ. Sci. Technol. 50(7), 3975–3984 (2016)

    Article  CAS  Google Scholar 

  61. Hsueh, Y.H., Tsai, P.H., Lin, K.S.: pH-dependent antimicrobial properties of copper oxide nanoparticles in Staphylococcus aureus. Int. J. Mol. Sci. 18(4), 793 (2017)

    Article  Google Scholar 

  62. Ladomersky, E., Petris, M.J.: Copper tolerance and virulence in bacteria. Metallomics 7(6), 957–964 (2015)

    Article  CAS  Google Scholar 

  63. Ssekatawa, K., Byarugaba, D.K., Angwe, M.K., Wampande, E.M., Ejobi, F., Nxumalo, E., Maaza, M., Sackey, J., Kirabira, J.B.: Phyto-mediated copper oxide nanoparticles for antibacterial, antioxidant and photocatalytic performances. Front. Bioeng. Biotechnol. 10, 820218 (2022)

    Article  Google Scholar 

  64. Letchumanan, D., Sok, S.P.M., Ibrahim, S., Nagoor, N.H., Arshad, N.M.: Plant-based biosynthesis of copper/copper oxide nanoparticles: an update on their applications in biomedicine, mechanisms, and toxicity. Biomolecules 11, 564 (2021)

    Article  CAS  Google Scholar 

  65. Perillo, B., Di Donato, M., Pezone, A., Di Zazzo, E., Giovannelli, P., Galasso, G., Castoria, G., Migliaccio, A.: ROS in cancer therapy: the bright side of the moon. Exp. Mol. Med. 52, 192–203 (2020)

    Article  CAS  Google Scholar 

  66. Nagajyothi, P., Muthuraman, P., Sreekanth, T., Kim, D.H., Shim, J.: Green synthesis: in-vitro anticancer activity of copper oxide nanoparticles against human cervical carcinoma cells. Arab. J. Chem. 10, 215–225 (2017)

    Article  CAS  Google Scholar 

  67. Chung, I.M., Abdul Rahuman, A., Marimuthu, S., Vishnu Kirthi, A., Anbarasan, K., Padmini, P., Rajakumar, G.: Green synthesis of copper nanoparticles using Eclipta prostrata leaves extract and their antioxidant and cytotoxic activities. Exp. Ther. Med. 14, 18–24 (2017)

    CAS  Google Scholar 

  68. Dey, A., Manna, S., Chattopadhyay, S., Mondal, D., Chattopadhyay, D., Raj, A., Das, S., Bag, B.G., Roy, S.: Azadirachta indica leaves mediated green synthesized copper oxide nanoparticles induce apoptosis through activation of TNF-alpha and caspases signaling pathway against cancer cells. J. Saudi Chem. Soc. 23, 222–238 (2019)

    Article  CAS  Google Scholar 

  69. Duman, F., Ocsoy, I., Kup, F.O.: Chamomile flower extract-directed CuO nanoparticle formation for its antioxidant and DNA cleavage properties. Mater. Sci. Eng. C Mater. Biol. Appl. 60, 333–338 (2016)

    Article  CAS  Google Scholar 

  70. Sulaiman, G.M., Tawfeeq, A.T., Jaaffer, M.D.: Biogenic synthesis of copper oxide nanoparticles using Olea europaea leaf extract and evaluation of their toxicity activities: an in vivo and in vitro study. Biotechnol. Prog. 34, 218–230 (2018)

    Article  CAS  Google Scholar 

  71. Siivola, K.M., Suhonen, S., Hartikainen, M., Catalán, J., Norppa, H.: Genotoxicity and cellular uptake of nanosized and fine copper oxide particles in human bronchial epithelial cells In Vitro. Mutat. Res. 856–857, 503217 (2020)

    Article  Google Scholar 

  72. He, Z.L., Yang, X.E., Stoffella, P.J.: Trace elements in agroecosystems and impacts on the environment. J. Trace Elem. Med. Biol. 19, 125–140 (2005)

    Article  CAS  Google Scholar 

  73. Ali, K., Saquib, Q., Ahmed, B., Siddiqui, M.A., Ahmad, J., Al-Shaeri, M., Al-Khedhairy, A.A., Musarrat, J.: Bio-functionalized CuO nanoparticles induced apoptotic activities in human breast carcinoma cells and toxicity against Aspergillus flavus: an in vitro approach. Process. Biochem. 91, 387–397 (2020)

    Article  CAS  Google Scholar 

  74. Kalaiarasi, A., Sankar, R., Anusha, C., Saravanan, K., Aarthy, K., Karthic, S., Mathuram, T.L., Ravikumar, V.: Copper oxide nanoparticles induce anticancer activity in A549 lung cancer cells by inhibition of histone deacetylase. Biotechnol. Lett. 40, 249–256 (2018)

    Article  CAS  Google Scholar 

  75. Pfeffer, C.M., Singh, A.T.: Apoptosis: a target for anticancer therapy. Int. J. Mol. Sci. 19, 448 (2018)

    Article  Google Scholar 

  76. Minelli, C., Shard, A.G.: Chemical measurements of polyethylene glycol shells on gold nanoparticles in the presence of aggregation. Biointerphases 11, 04B306 (2016)

    Article  Google Scholar 

  77. Liu, H., Lai, W., Liu, X., Yang, H., Fang, Y., Tian, L., Li, K., Nie, H., Zhang, W., Shi, Y., et al.: Exposure to copper oxide nanoparticles triggers oxidative stress and endoplasmic reticulum (ER)-stress induced toxicology and apoptosis in male rat liver and BRL-3A cell. J. Hazard. Mater. 401, 123349 (2021)

    Article  CAS  Google Scholar 

  78. Soria, N.G.C., Aga, D.S., Atilla-Gokcumen, G.E.: Lipidomics reveals insights on the biological effects of copper oxide nanoparticles in a human colon carcinoma cell line. Mol. Omics 15, 30–38 (2019)

    Article  Google Scholar 

  79. Laha, D., Pramanik, A., Maity, J., Mukherjee, A., Pramanik, P., Laskar, A., Karmakar, P.: Interplay between autophagy and apoptosis mediated by copper oxide nanoparticles in human breast cancer cells MCF7. Biochim. Biophys. Acta Gen. Subj. 2014(1840), 1–9 (2014)

    Article  Google Scholar 

  80. Tao, X., Wan, X., Wu, D., Song, E., Song, Y.: A tandem activation of NLRP3 inflammasome induced by copper oxide nanoparticles and dissolved copper ion in J774A.1 macrophage. J. Hazard. Mater. 411, 125134 (2021)

    Article  CAS  Google Scholar 

  81. Preeth, D.R., Shairam, M., Suganya, N., Hootan, R., Kartik, R., Pierre, K., Suvro, C., Rajalakshmi, S.: Green synthesis of copper oxide nanoparticles using sinapic acid: an underpinning step towards antiangiogenic therapy for breast cancer. J. Biol. Inorg. Chem. 24, 633–645 (2019)

    Article  Google Scholar 

  82. Li, X., Shenashen, M.A., Wang, X., Ito, A., Taniguchi, A., El-Safty, S.A.: Hierarchically porous, and Cu- and Zn-containing γ-AlOOH mesostrands as adjuvants for cancer immunotherapy. Sci. Rep. 7(1), 16749 (2017)

    Article  Google Scholar 

  83. Li, X., Shenashen, M.A., Wang, X., Ito, A., Taniguchi, A., El-Safty, S.A.: Mesoporous caged-γ-AlOOH-double-stranded RNA analog complexes for cancer immunotherapy. Adv. Biosyst. 2(1), 1700114 (2018)

    Article  Google Scholar 

  84. Azzam, A.M., Shenashen, M.A., Selim, M.S., Mostafa, B., Tawfik, A., El-Safty, S.A.: Vancomycin-loaded furriness amino magnetic nanospheres for rapid detection of gram-positive water bacterial contamination. Nanomaterials 12, 510 (2022)

    Article  CAS  Google Scholar 

  85. Azzam, A.M., Shenashen, M.A., Mostafa, B.B., Kandeel, W.A., El-Safty, S.A.: Antibacterial activity of magnesium oxide nano-hexagonal sheets for wastewater remediation. Environ. Prog. Sustain. Energy 38(s1), S260–S266 (2019)

    Article  CAS  Google Scholar 

  86. Ohsumi, Y., Kitamoto, K., Anraku, Y.: Changes induced in the permeability barrier of the yeast plasma membrane by cupric ion. J. Bacteriol. 170, 2676–2682 (1988)

    Article  CAS  Google Scholar 

  87. Lemire, J.A., Harrison, J.J., Turner, R.J.: Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat. Rev. Microbiol. 11, 371–384 (2013)

    Article  CAS  Google Scholar 

  88. Warnes, S.L., Caves, V., Keevil, C.W.: Mechanism of copper surface toxicity in Escherichia coli O157:H7 and Salmonella involves immediate membrane depolarization followed by slower rate of DNA destruction which differs from that observed for Gram-positive bacteria. Environ. Microbiol. 14, 1730–1743 (2012)

    Article  CAS  Google Scholar 

  89. Nan, L., Liu, Y., Lü, M., Yang, K.: Study on antibacterial mechanism of copper-bearing austenitic antibacterial stainless steel by atomic force microscopy. J. Mater. Sci. Mater. Med. 19, 3057–3062 (2008)

    Article  CAS  Google Scholar 

  90. Avery, S.V., Howlett, N.G., Radice, S.: Copper toxicity towards Saccharomyces cerevisiae: dependence on plasma membrane fatty acid composition. Appl. Environ. Microbiol. 62, 3960–3966 (1996)

    Article  CAS  Google Scholar 

  91. Hazel, J.R., Williams, E.E.: The role of alterations in membrane lipid composition in enabling physiological adaptation of organisms to their physical environment. Prog. Lipid Res. 29, 167–227 (1990)

    Article  CAS  Google Scholar 

  92. Weaver, L., Noyce, J.O., Michels, H.T., Keevil, C.W.: Potential action of copper surfaces on meticillin-resistant Staphylococcus aureus. J. Appl. Microbiol. 109, 2200–2205 (2010)

    Article  CAS  Google Scholar 

  93. Rifkind, J.M., Shin, Y.A., Heim, J.M., Eichhorn, G.L.: Cooperative disordering of single-stranded polynucleotides through copper crosslinking. Biopolym. Orig. Res. Biomol. 15, 1879–1902 (1976)

    Article  CAS  Google Scholar 

  94. Arendsen, L.P., Thakar, R., Sultan, A.H.: The use of copper as an antimicrobial agent in health care, including obstetrics and gynecology. Clin. Microbiol. Rev. 32(4), e00125-e218 (2019)

    Article  CAS  Google Scholar 

  95. Finney, L.A., O’Halloran, T.V.: Transition metal speciation in the cell: insights from the chemistry of metal ion receptors. Science 300, 931–936 (2003)

    Article  CAS  Google Scholar 

  96. Ma, Z., Jacobsen, F.E., Giedroc, D.P.: Coordination chemistry of bacterial metal transport and sensing. Chem. Rev. 109, 4644–4681 (2009)

    Article  CAS  Google Scholar 

  97. Waldron, K.J., Robinson, N.J.: How do bacterial cells ensure that metalloproteins get the correct metal? Nat. Rev. Microbiol. 7, 25–35 (2009)

    Article  CAS  Google Scholar 

  98. Karlstrom, A.R., Shames, B.D., Levine, R.L.: Reactivity of cysteine residues in the protease from human immunodeficiency virus: identification of a surface-exposed region which affects enzyme function. Arch. Biochem. Biophys. 304, 163–169 (1993)

    Article  CAS  Google Scholar 

  99. Kim, J.-H., Cho, H., Ryu, S.-E., Choi, M.-U.: Effects of metal ions on the activity of protein tyrosine phosphatase VHR: highly potent and reversible oxidative inactivation by Cu2+ ion. Arch. Biochem. Biophys. 382, 72–80 (2000)

    Article  CAS  Google Scholar 

  100. Macomber, L., Imlay, J.A.: The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity. Proc. Natl. Acad Sci. 106, 8344–8349 (2009)

    Article  CAS  Google Scholar 

  101. Eleraky, N.E., Allam, A., Hassan, S.B., Omar, M.M.: Nanomedicine fight against antibacterial resistance: an overview of the recent pharmaceutical innovations. Pharmaceutics 12(2), 142 (2020)

    Article  CAS  Google Scholar 

  102. Hua, S., De Matos, M.B.C., Metselaar, J.M., Storm, G.: Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: Pathways for translational development and commercialization. Front. Pharmacol. 9, 790 (2018)

    Article  Google Scholar 

  103. Tinkle, S., McNeil, S.E., Mühlebach, S., Bawa, R., Borchard, G., Barenholz, Y., Tamarkin, L., Desai, N.: Nanomedicines: addressing the scientific and regulatory gap. Ann. N. Y. Acad. Sci. 1313, 35–56 (2014)

    Article  CAS  Google Scholar 

  104. Kumar, T.M., Mutalik, S., Rajanikant, G.K.: Nanotechnology and nanomedicine: Going small means aiming big. Curr. Pharm. Des. 16, 1882–1892 (2010)

    Article  Google Scholar 

  105. Hafner, A., Lovric, J., Lakos, G.P., Pepic, I.: Nanotherapeutics in the EU: an overview on current state and future directions. Int. J. Nanomed. 9, 1005 (2014)

    Google Scholar 

  106. Ifijen, I.H., Maliki, M., Anegbe, B.: Synthesis photocatalytic degradation and antibacterial properties of selenium or silver doped zinc oxide nanoparticles: A detailed review. OpenNano 8, 100082 (2022)

Download references

Funding

No funding was received for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ikhazuagbe H. Ifijen.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maliki, M., Ifijen, I.H., Ikhuoria, E.U. et al. Copper nanoparticles and their oxides: optical, anticancer and antibacterial properties. Int Nano Lett 12, 379–398 (2022). https://doi.org/10.1007/s40089-022-00380-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40089-022-00380-2

Keywords

Navigation