Skip to main content

Metallic Nanoparticles: Potential Antimicrobial and Therapeutic Agents

  • Chapter
  • First Online:
Advances in Animal Biotechnology and its Applications

Abstract

Nanoscience deals with the structural and functional aspects of materials with a size range of 1–100 nm. Such small size range offers a high surface to volume ratio which in turn proves advantageous over macromolecules of similar chemical compositions. Contributing to their unique properties and biocompatibility with human cells is the possibility of their biogenic synthesis, which further makes them an attractive alternative option for use in human medicine. Nanostructures of various shapes, sizes, and configurations have been facing extensive investigation since the last few decades. Initially, nanoparticles were majorly researched for the inspection of their antimicrobial properties, but as the field expanded, it has further extended to uncovering their potential applications in therapeutics, drug delivery, and nanomedicine. The present chapter aims at discussing the potential of metallic nanoparticles as antimicrobial and therapeutic agents, the major focus being on the various proposed mechanisms used by nanoparticles for the inhibition of microbial cells and the various applications of nanoparticles in the field of therapeutics and drug discovery. Besides the potential benefits of nanoparticles, there is a mounting apprehension about the risk associated with their use on living beings and environment. There is a tremendous need to study their toxic effects before using them as routine therapeutic agents. Hence, the studies related to the toxic effects of nanoparticles on nontarget population which are essential for their implementation as therapeutic agents have also been reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahamed M, Siddiqui MA, Akhtar MJ, Ahmad I, Pant AB, Alhadlaq HA (2010) Genotoxic potential of copper oxide nanoparticles in human lung epithelial cells. Biochem Biophys Res Commun 396:578–583

    Article  PubMed  CAS  Google Scholar 

  • Ahmad T, Wani IA, Manzoor N, Ahmed J, Asiri AM (2013) Biosynthesis, structural characterization and antimicrobial activity of gold and silver nanoparticles. Colloids Surf B: Biointerfaces 107:227–234

    Article  PubMed  CAS  Google Scholar 

  • Alt V, Bechert T, Steinrücke P, Wagener M, Seidel P, Dingeldein E, Domann E, Schnettler R (2004) An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. Biomaterials 25:4383–4391

    Article  PubMed  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  PubMed  CAS  Google Scholar 

  • Arvizo R, Bhattacharya R, Mukherjee P (2010) Gold nanoparticles: opportunities and challenges in nanomedicine. Expert Opin Drug Deliv 7(6):753–763

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aust SD, Chignell CF, Bray TM, Kalyanaraman B, Mason RP (1993) Free radicals in toxicology. Toxicol Appl Pharm 120(2):168–178

    Article  CAS  Google Scholar 

  • Babes L, Denizot B, Tanguy G, Le Jeune JJ, Jallet P (1999) Synthesis of iron oxide nanoparticles used as MRI contrast agents: a parametric study. J Colloid Interface Sci 212:474–482

    Article  PubMed  CAS  Google Scholar 

  • Bansal P, Duhan JS, Gahlawat SK (2014) Biogenesis of nanoparticles. Afr J Biotechnol 13(28):2778–2785

    Article  CAS  Google Scholar 

  • Bera RK, Mandal SM, Raj CR (2014) Antimicrobial activity of fluorescent Ag nanoparticles. Lett Appl Microbiol 58:520–526

    Article  PubMed  CAS  Google Scholar 

  • Biswas A, Bayer IS, Biris AS, Wang T, Dervishi E, Faupel F (2012) Advances in top-down and bottom-up surface nanofabrication: techniques, applications & future prospects. Adv Colloid Interf Sci 170(1–2):2–27

    Article  CAS  Google Scholar 

  • Braun GB, Friman T, Pang H-B, Pallaoro A, de Mendoza TH, Willmore A-MA, Kotamraju VR, Mann AP, She Z-G, Sugahara KN, Reich NO, Teesalu T, Ruoslahti E (2014) Etchable plasmonic nanoparticle probes to image and quantify cellular internalization. Nat Mater 13(9):904–911

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Braydich-Stolle L, Hussain SM, Schlager J, Hofmann MC (2005) In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol Sci 88:412–419

    Article  PubMed  CAS  Google Scholar 

  • Brayner R, Ferrari-Iliou R, Brivois N, Djediat S, Benedetti MF, Fiévet F (2006) Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett 6(4):866–870

    Article  PubMed  CAS  Google Scholar 

  • Brooker RJ (2011) Genetics: analysis and principles, 4th edn. McGraw-Hill Science, New York. ISBN 978-0-07-352528-0

    Google Scholar 

  • Buzea C, Pacheco II, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2:MR17–MR71s

    Article  PubMed  Google Scholar 

  • Canesi L, Ciacci C, Betti M, Fabbri R, Canonico B, Fantinati A, Marcomini A, Poiana G (2008) Immunotoxicity of carbon black nanoparticles to blue mussel hemocytes. Environ Int 34:1114–1118

    Article  PubMed  CAS  Google Scholar 

  • Castellano JJ, Shafii SM, Ko F, Donate G, Wright TE, Mannari RJ, Payne WG, Smith DJ, Robson MC (2007) Comparative evaluation of silver-containing antimicrobial dressings and drugs. Int Wound J 4(2):114–122

    Article  PubMed  PubMed Central  Google Scholar 

  • Chertok B, Moffat BA, David AE, Yu F, Bergemann C, Ross BD (2008) Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors. Biomaterials 29:487–496

    Article  PubMed  CAS  Google Scholar 

  • Cho WS, Duffin R, Howie SE, Scotton CJ, Wallace WA, Macnee W, Bradley M, Megson IL, Donaldson K (2011) Progressive severe lung injury by zinc oxide nanoparticles; the role of Zn2+ dissolution inside lysosomes. Part Fibre Toxicol 8:27–42

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cui Y, Zhao Y, Tian Y, Zhang W, Lü X, Jiang X (2012) The molecular mechanism of action of bactericidal gold nanoparticles on Escherichia coli. Biomaterials 33(7):2327–2333

    Article  PubMed  CAS  Google Scholar 

  • Das SK (2009) Gold nanoparticles: microbial synthesis and application in water hygiene management. Langmuir 25:8192–8199

    Article  PubMed  CAS  Google Scholar 

  • Davis ME, Chen Z, Shin DM (2008) Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov 7:771–782

    Article  PubMed  CAS  Google Scholar 

  • Deguchi J-O, Aikawa M, Tung C-H, Aikawa E, Kim D-E, Ntziachristos V, Weissleder R, Libby P (2006) Inflammation in atherosclerosis–visualizing matrix metalloproteinase action in macrophages in vivo. Circulation 114:55–62

    Article  PubMed  Google Scholar 

  • Duncan R (2006) Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer 6:688–701

    Article  PubMed  CAS  Google Scholar 

  • Egger S, Lehmann RP, Height MJ, Loessner MJ, Schuppler M (2009) Antimicrobial properties of a novel silver-silica nanocomposite material. Appl Environ Microbiol 75:2973–2976

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Elias A, Tsourkas A (2009) Imaging circulating cells and lymphoid tissues with iron oxide nanoparticles. Hematol Am Soc Hematol Educ Program 2009:720–726

    Google Scholar 

  • Emerich DF, Thanos CG (2007) Targeted nanoparticle-based drug delivery and diagnosis. J Drug Target 15(3):163–183

    Article  PubMed  CAS  Google Scholar 

  • Etrych T, Chytil P, Mrkvan T, Sırova, Rihova B, Ulbrich K (2008) Conjugates of doxorubicin with graft HPMA copolymers for passive tumor targeting. J Control Release 132(3):184–192

    Article  PubMed  CAS  Google Scholar 

  • Farokhzad OC, Langer R (2006) Nanomedicine: developing smarter therapeutic and diagnostic modalities. Adv Drug Deliv Rev 58:1456–1459

    Article  PubMed  CAS  Google Scholar 

  • Felson DT, Anderson JJ, Meenan RF (1990) The comparative efficacy and toxicity of second-line drugs in rheumatoid arthritis. Arthritis Rheum 33:1449–1461

    Article  PubMed  CAS  Google Scholar 

  • Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52(4):662–668

    Article  PubMed  CAS  Google Scholar 

  • Feynman RP (1960) There’s plenty of room at the bottom. Eng Sci 23(5):22–36

    Google Scholar 

  • Finney LA, O’Halloran TV (2003) Transition metal speciation in the cell: insights from the chemistry of metal ion receptors. Science 300:931–936

    Article  PubMed  CAS  Google Scholar 

  • Gerhardt LC, Jell GMR, Boccaccini AR (2007) Titanium dioxide (TiO2) nanoparticles filled poly (D, L lactic acid) (PDLLA) matrix composites for bone tissue engineering. J Mater Sci Mater Med 95:69–80

    Google Scholar 

  • Gordon T, Perlstein B, Houbara O, Felner I, Banin E, Margel S (2011) Synthesis and characterization of zinc/iron oxide composite nanoparticles and their antibacterial properties. Colloids Surf A Physicochem Eng Aspect 374(1–3):1–8

    Article  CAS  Google Scholar 

  • Hanagata N, Zhuang F, Connolly S, Li J, Ogawa N, Xu M (2011) Molecular responses of human lung epithelial cells to the toxicity of copper oxide nanoparticles inferred from whole genome expression analysis. ASC Nano 5(12):9326–9338

    Article  CAS  Google Scholar 

  • Hanley C, Layne J, Punnoose A, Reddy KM, Coombs I, Coombs A, Feris K, Wingett D (2008) Preferential killing of cancer cells and activated human T cells using ZnO nanoparticles. Nanotechnology 19(29):295103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang Z, Zheng X, Yan D, Yin G, Liao X, Kang Y, Yao Y, Huang D, Hao B (2008) Toxicological effect of ZnO nanoparticles based on bacteria. Langmuir 24(8):4140–4144

    Article  PubMed  CAS  Google Scholar 

  • Huster D, Purnat TD, Burkhead LL, Ralle M, Fiehn O, Stuckert F, Olson NE, Teupser D, Lutsekno SJ (2007) High copper selectively alters lipid metabolism and cell cycle machinery in the mouse model of Wilson disease. J Biol Chem 282:8343–8355

    Article  PubMed  CAS  Google Scholar 

  • Iavicoli I, Fontana L, Leso V, Bergamaschi A (2013) The effects of nanomaterials as endocrine disruptors. Int J Mol Sci 14:16732–16801

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jalal R, Goharshadi EK, Abareshi M, Moosavi M, Yousefi A, Nancarrow P (2010) ZnO nanofluids: green synthesis, characterization, and antibacterial activity. Mater Chem Phys 121(1–2):198–201

    Article  CAS  Google Scholar 

  • Jamdagni P, Khatri P, Rana JS (2016) Nanoparticles based DNA conjugates for detection of pathogenic microorganisms. Int Nano Lett. https://doi.org/10.1007/s40089-015-0177-0

  • Kahru A, Savolainen K (2010) Potential hazard of nanoparticles: from properties to biological and environmental effects. Toxicology 269(2–3):89–91

    Article  PubMed  CAS  Google Scholar 

  • Karlsson HL, Cronholm P, Gustafsson J, Möller L (2008) Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol 21:1726–1732

    Article  PubMed  CAS  Google Scholar 

  • Kasemets K, Ivask A, Dubourguier HC, Kahru A (2009) Toxicity of nanoparticles of ZnO, CuO and TiO2 to yeast Saccharomyces cerevisiae. Toxicol In Vitro 23(6):1116–1122

    Article  PubMed  CAS  Google Scholar 

  • Kaur P, Thakur R, Kumar S, Dilbaghi N (2011) Interaction of ZnO nanoparticles with food borne pathogens Escherichia coli DH5α and Staphylococcus aureus 5021 & their bactericidal efficacy. AIP Conf Proc 1393:153–154

    Article  CAS  Google Scholar 

  • Kaur P, Thakur R, Chaudhury A (2012) An in vitro study of the antifungal activity of silver/chitosan nanoformulations against important seed borne pathogens. Int J Sci Technol Res 1(6):83–86

    Google Scholar 

  • Kaur P, Chaudhury A, Thakur R (2013) Synthesis of chitosan-silver nanocomposites and their antibacterial activity. Int J Sci Eng Res 4(4):869

    Google Scholar 

  • Kaur P, Thakur R, Barnela M, Chopra M, Manuja A, Chaudhury A (2014) Synthesis, characterization and in vitro evaluation of cytotoxicity and antimicrobial activity of chitosan–metal nanocomposites. J Chem Technol Biotechnol. https://doi.org/10.1002/jctb.4383

  • Kaur P, Thakur R, Chaudhury A (2016) Biogenesis of copper nanoparticles using peel extract of Punica granatum and their antimicrobial activity against opportunistic pathogens. Green Chem Letters Rev 9(1):33–38

    Article  CAS  Google Scholar 

  • Kennedy DC, Lyn RK, Pezacki JP (2009) Cellular lipid metabolism is influenced by the coordination environment of copper. J Am Chem Soc 131:2444–2445

    Article  PubMed  CAS  Google Scholar 

  • Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, Kim YK, Lee YS, Jeong DH, Cho MH (2007) Antimicrobial effects of silver nanoparticles. Nanomedicine Nanotechnol Biol Med 3:95–101

    Article  CAS  Google Scholar 

  • Knaapen M, Borm PJA, Albrecht C, Schins RPF (2004) Inhaled particles and lung cancer, part A: mechanisms. Int J Cancer 109(6):799–809

    Article  PubMed  CAS  Google Scholar 

  • Kolar M, Urbanek K, Latal T (2001) Antibiotic selective pressure and development of bacterial resistance. Int J Antimicrob Ag 17:357–363

    Article  CAS  Google Scholar 

  • Kooi ME, Cappendijk VC, Cleutjens KB, Kessels AG, Kitslaar PJ, Borgers M (2003) Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging. Circulation 107:2453–2458

    Article  PubMed  CAS  Google Scholar 

  • Kumar A, Pandey AK, Singh SS, Shanker R, Dhawan A (2011) Engineered ZnO and TiO2 nanoparticles induce oxidative stress and DNA damage leading to reduced viability of Escherichia coli. Free Radic Biol Med 51(10):1872–1881

    Article  PubMed  CAS  Google Scholar 

  • Lanone S, Rogerieux F, Geys F, Dupont A, Maillot-Marechal E, Boczkowski J, Lacroix G, Hoet P (2009) Comparative toxicity of 24 manufactured nanoparticles in human alveolar epithelial and macrophage cell lines. Part Fibre Toxicol 6:14–25

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lansdown ABG (2002) Silver I: its antibacterial properties and mechanism of action. J Wound Care 11:125–138

    Article  PubMed  CAS  Google Scholar 

  • Li Q, Mahendra S, Lyon DY, Brunet L, Liga MV, Li D, Alvarez PJ (2008) Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res 42(18):4591–4602

    Article  PubMed  CAS  Google Scholar 

  • Li J, Han T, Wei N, Du J, Zhao X (2009) Three-dimensionally ordered macroporous (3DOM) gold-nanoparticle-doped titanium dioxide (GTD) photonic crystals modified electrodes for hydrogen peroxide biosensor. Biosens Bioelectron 25(4):773–777

    Article  PubMed  CAS  Google Scholar 

  • Li CH, Shen CC, Cheng YW, Huang SH, Wu CC, Kao CC, Liao JW, Kang JJ (2012) Organ biodistribution, clearance, and genotoxicity of orally administered zinc oxide nanoparticles in mice. Nanotoxicology 6:746–756

    Article  PubMed  CAS  Google Scholar 

  • Lian T, Ho RJ (2001) Trends and developments in liposome drug delivery systems. J Pharm Sci 90:667–680

    Article  PubMed  CAS  Google Scholar 

  • Lipovsky A, Nitzan Y, Gedanken A, Lubart R (2011) Antifungal activity of ZnO nanoparticles-the role of ROS mediated cell injury. Nanotechnology 22(10):105101

    Article  PubMed  CAS  Google Scholar 

  • Liu G, Mena P, Perry G, Smith MA (2009) Metal chelators coupled with nanoparticles as potential therapeutic agents for Alzheimer’s disease. Nanoneuroscience 1(1):42–55

    Article  CAS  Google Scholar 

  • Luo X, Matranga C, Tan S, Alba N, Cui XT (2011) Carbon nanotube nanoreservior for controlled release of anti-inflammatory dexamethasone. Biomaterials 32:6316–6323

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lushchak VI (2001) Oxidative stress and mechanisms of protection against it in bacteria. Biochemistry (Moscow) 66:476–489

    Article  CAS  Google Scholar 

  • Matsumura Y, Yoshikata K, Kunisaki S, Tsuchido T (2003) Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. Appl Environ Microbiol 69(7):4278–4281

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maurer-Jones MA, Mousavi MPS, Chen LD, Bühlmann P, Haynes CL (2013) Characterization of silver ion dissolution from silver nanoparticles using fluorous-phase ion-selective electrodes and assessment of resultant toxicity to Shewanella oneidensis. Chem Sci 4:2564–2572

    Article  CAS  Google Scholar 

  • Mazooz G, Mehlman T, Lai TS, Greenberg CS, Dewhirst MW, Neeman M (2005) Development of magnetic resonance imaging contrast material for in vivo mapping of tissue transglutaminase activity. Cancer Res 65:1369–1375

    Article  PubMed  CAS  Google Scholar 

  • Midander K, Cronholm P, Karlsson HL, Elihn K, Moller L, Leygraf C, Wallinder IO (2009) Surface characteristics, copper release, and toxicity of nanoand micrometer-sized copper and copper (II) oxide particles: a cross-disciplinary study. Small 5:389–399

    Article  PubMed  CAS  Google Scholar 

  • Mirkin CA, Taton TA (2000) Semiconductors meet biology. Nature 40:626–627

    Article  CAS  Google Scholar 

  • Miyoshi N, Kume K, Tsutumi K, Fukunaga Y, Ito S, Imamura Y, Bibin AB (2011) Application of titanium dioxide (TiO2) nanoparticles in photodynamic therapy (PDT) of an experimental tumor. AIP Conf Proc 1415:21. https://doi.org/10.1063/1.3667210

    Article  CAS  Google Scholar 

  • Mnyusiwalla A, Daar AS, Singer PA (2003) ‘Mind the gap’: science and ethics in nanotechnology. Nanotechnology 14:R9–R13

    Article  Google Scholar 

  • Mody VV, Nounou MI, Bikram M (2009) Novel nanomedicine-based MRI contrast agents for gynecological malignancies. Adv Drug Deliv Rev 61:795–807

    Article  PubMed  CAS  Google Scholar 

  • Morales MP, Bomati-Miguel O, de Alejo RP, Ruiz-Cabello J, Veintemillas-Verdaguer S, O’Grady K (2003) Contrast agents for MRI based on iron oxide nanoparticles prepared by laser pyrolysis. J Magn Magn Mater 266:102–109

    Article  CAS  Google Scholar 

  • Moreno-Garrido I, Pérez S, Blasco J (2015) Toxicity of silver and gold nanoparticles on marine microalga. Mar Environ Res 111:60–73

    Article  PubMed  CAS  Google Scholar 

  • Morones JR, Elechiguerra JL, CamachoA HK, Kouri JB, Ramirez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16(10):2346–2353

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee P, Bhattacharya R, Bone N, Lee YK, Patra CR, Wang S, Lu L, Secreto C, Banerjee PC, Yaszemski MJ, Kay NE, Mukhopadhyay D (2007) Potential therapeutic application of gold nanoparticles in B-chronic lymphocytic leukemia (BCLL): enhancing apoptosis. J Nanobiotechnol 5:4–16

    Article  CAS  Google Scholar 

  • Nishimori H, Kondoh M, Isoda K, Tsunoda S, Tsutsumi Y, Yagi K (2009) Silica nanoparticles as hepatotoxicants. Eur J Pharm Biopharm 72:496–501

    Article  PubMed  CAS  Google Scholar 

  • Padmavathy N, Vijayaraghavan R (2008) Enhanced bioactivity of ZnO nanoparticles-an antimicrobial study. Sci Technol Adv Mater 9:1–7

    Article  CAS  Google Scholar 

  • Panyala NR, Pena-Mendez EM, Havel J (2008) Silver or silver nanoparticles: a hazardous threat to the environment and human health? J Appl Biomed 6:117–129

    CAS  Google Scholar 

  • Park J, Fong PM, Lu J, Russell KS, Booth CJ, Saltzman WM, Fahmy TM (2009) PEGylated PLGA nanoparticles for the improved delivery of doxorubicin. Nanomedicine 5:410–418

    Article  PubMed  CAS  Google Scholar 

  • Peng XH, Qian X, Mao H, Wang AY, Chen ZG, Nie S (2008) Targeted magnetic iron oxide nanoparticles for tumor imaging and therapy. Int J Nanomedicine 3:311–321

    PubMed  PubMed Central  CAS  Google Scholar 

  • Prokop A, Davidson JM (2008) Nanovehicular intracellular delivery systems. J Pharm Sci 97:3518–3590

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rai RV, Bai JA (2011) Nanoparticles and their potential application as antimicrobials. In: Méndez-Vilas A (ed) Science against microbial pathogens: communicating current research and technological advances. Formatex Research Center, Spain, pp 197–209

    Google Scholar 

  • Sawai J (2003) Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay. J Microbiol Methods 54(2):177–182

    Article  PubMed  CAS  Google Scholar 

  • Sawai J, Shoji S, Igarashi H, Hashimoto A, Kokugan T, Shimizu M, Kojima H (1998) Hydrogen peroxide as an antibacterial factor in zinc oxide powder slurry. J Ferment Bioeng 86(5):521–522

    Article  CAS  Google Scholar 

  • Shah MA, Tokeer A (2010) Principles of nanoscience and nanotechnology. Narosa Publishing House, New Delhi

    Google Scholar 

  • Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interf Sci 145:83–96

    Article  CAS  Google Scholar 

  • Sharma TK, Chopra A, Sapra M, Kumawat D, Patil SD, Pathania R, Navani NK (2012) Green synthesis and antimicrobial potential of silver nanoparticles. Int J Green Nanotechnol 4(1):1–16

    Article  CAS  Google Scholar 

  • Shenderova OA, Zhirnov VV, Brenner DW (2002) Carbon nanostructures. Crit Rev Solid State Mater Sci 27(3–4):227–356

    Article  CAS  Google Scholar 

  • Shin SH, Ye MK, Kim HS, Kang HS (2007) The effects of nano-silver on the proliferation and cytokine expression by peripheral blood mononuclear cells. Int Immunopharmacol 7:1813–1818

    Article  PubMed  CAS  Google Scholar 

  • Siegel RW (1993) Nanostructured materials- mind over matter. Nanostruct Mater 3:1–18

    Article  CAS  Google Scholar 

  • Singleton P (2004) Bacteria, in biology, biotechnology and medicine, 6th edn. Wiley, West Sussex

    Google Scholar 

  • Sinha R, Karan R, Sinha A, Khare SK (2011) Interaction and nanotoxic effect of ZnO and Ag nanoparticles on mesophilic and halophilic bacterial cells. Bioresour Technol 102:1516–1520

    Article  PubMed  CAS  Google Scholar 

  • Smalley RE (1999) U.S. Congress Testimony, p2. http://www.sc.doe.gov//bes/Senate/smalley.pdf

    Google Scholar 

  • Sondi I, Sondi BS (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for gram-negative bacteria. J Colloid Interface Sci 275(1):177–182

    Article  PubMed  CAS  Google Scholar 

  • Sortino S (2012) Photoactivated nanomaterials for biomedical release applications. J Mater Chem 22:301–318

    Article  CAS  Google Scholar 

  • Syed MA (2014) Advances in nanodiagnostic techniques for microbial agents. Biosens Bioelectron 51:391–400

    Article  PubMed  CAS  Google Scholar 

  • Tanaka T, Shiramoto S, Miyashita M, Fujishima Y, Kaneo Y (2004) Tumor targeting based on the effect of enhanced permeability and retention (EPR) and the mechanism of receptor-mediated endocytosis (RME). Int J Pharm 277(1–2):39–61

    Article  PubMed  CAS  Google Scholar 

  • Taniguchi N (1974) On the basic concept of nanotechnology. In: Proceedings of the international conference production engineering, Tokyo, Part II, Japan Society of Precision Engineering, pp 18–23

    Google Scholar 

  • Thannickal VJ, Fanburg BL (2000) Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol 279(6):L1005–L1028

    Article  PubMed  CAS  Google Scholar 

  • Thill A, Zeyons O, Spalla O, Chauvat F, Rose J, Auffan M, Flank AM (2006) Cytotoxicity of CeO2 nanoparticles for Escherichia coli. Physico-chemical insight of the cytotoxicity mechanism. Environ Sci Technol 40:6151–6156

    Article  PubMed  CAS  Google Scholar 

  • Tian L, Lin B, Wu L, Li K, Liu H, Yan J, Liu X, Xi Z (2015) Neurotoxicity induced by zinc oxide nanoparticles: age-related differences and interaction. Sci Rep 5:16117

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Torchilin VP (2005) Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 4:145–159

    Article  PubMed  CAS  Google Scholar 

  • Torchilin V (2008) Multifunctional pharmaceutical nanocarriers. Springer, New York

    Book  Google Scholar 

  • Uddin MJ, Mondal D, Morris CA, Lopez T, Diebold U, Gonzalez RD (2011) An in vitro controlled release study of valproic acid encapsulated in a titania ceramic matrix. Appl Surf Sci 257:7920–7927

    Article  CAS  Google Scholar 

  • Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M (2006) Free radicals, metals and antioxidants in oxidative stress induced cancer. Chem Biol Interact 160(1):1–40

    Article  PubMed  CAS  Google Scholar 

  • Vandebriel RJ, De Jong WH (2012) A review of mammalian toxicity of ZnO nanoparticles. Nanotechnol Sci Appl 5:61–71

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Verma S, Gokhale R, Burgess DJ (2009) A comparative study of top-down and bottom-up approaches for the preparation of micro/nanosuspensions. Int J Pharm 380(1–2):216–222

    Article  PubMed  CAS  Google Scholar 

  • Vollath D (2008) Nanomaterials: an introduction to synthesis, properties and application. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 1–20

    Google Scholar 

  • Wagner V, Dullaart A, Bock A-K, Zweck A (2006) The emerging nanomedicine landscape. Nat Biotechnol 24:1211–1217

    Article  PubMed  CAS  Google Scholar 

  • Walker B, Barrett S, Polasky S, Galaz V, Folke C, Engström G, Ackerman F, Arrow K, Carpenter S, Chopra K, Daily G, Ehrlich P, Hughes T, Kautsky N, Levin S, Mäler KG, Shogren J, Vincent J, Xepapadeas T, de Zeeuw A (2009) Environment. Looming global-scale failures and missing institutions. Science 325:1345–1346

    Article  CAS  PubMed  Google Scholar 

  • Wang AZ, Gu F, Zhang L, Chan JM, Radovic-Moreno A, Shaikh MR, Farokhzad OC (2008a) Biofunctionalized targeted nanoparticles for therapeutic applications. Expert Opin Biol Ther 8(8):1063–1070

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang B, Feng W, Wang M, Wang T, Gu Y, Zhu M, Ouyang H, Shi J, Zhang F, Zhao Y, Chai Z, Wang H, Wang J (2008b) Acute toxicological impact of nano and submicro scaled zinc oxide powder on healthy adult mice. J Nanopart Res 10:263–276

    Article  CAS  Google Scholar 

  • Wang X, Li J, Wang Y, Cho KJ, Kim G, Gjyrezi A, Koenig L, Giannakakou P, Shin HJ, Tighiouart M, Nie S, Chen ZG, Shin DM (2009) HFT-T, a targeting nanoparticle, enhances specific delivery of paclitaxel to folate receptor-positive tumors. ACS Nano 3:3165–3174

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wei W, Xu C, Wu H (2006) Magnetic iron oxide nanoparticles mediated gene therapy for breast cancer – an in vitro study. J Huazhong Univ Sci Technol Med Sci 26:728–730

    Article  CAS  Google Scholar 

  • Xie G, Sun J, Zhong G, Shi L, Zhang D (2010) Biodistribution and toxicity of intravenously administered silica nanoparticles in mice. Arch Toxicol 84:183–190

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto O (2001) Influence of particle size on the antibacterial activity of zinc oxide. Int J Inorg Mater 3(7):643–646

    Article  CAS  Google Scholar 

  • Yun H, Kim JD, Choi HC, Lee CW (2013) Antibacterial activity of CNT-Ag and GO-Ag nanocomposites against Gram-negative and Gram-positive bacteria. Bull Kor Chem Soc 34:3261–3264

    Article  CAS  Google Scholar 

  • Zhang L, Granick S (2006) How to stabilize phospholipid liposome (using nanoparticles). Nano Lett 6:694–698

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Ding Y, Povey M, York D (2008) ZnO nanofluids–a potential antibacterial agent. Prog Nat Sci 18(8):939–944

    Article  CAS  Google Scholar 

  • Zhang Y, Nayak TR, Hong H, Cai W (2013) Biomedical applications of zinc oxide nanomaterials. Curr Mol Med 13(10):1633–1645

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou JC, Yang ZL, Dong W, Tang RJ, Sun LD, Yan CH (2011) Bioimaging and toxicity assessments of near-infrared up conversion luminescent NaYF4: Yb, Tm nanocrystals. Biomaterials 32(34):9059–9067

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jamdagni, P., Sidhu, P.K., Khatri, P., Nehra, K., Rana, J.S. (2018). Metallic Nanoparticles: Potential Antimicrobial and Therapeutic Agents. In: Gahlawat, S., Duhan, J., Salar, R., Siwach, P., Kumar, S., Kaur, P. (eds) Advances in Animal Biotechnology and its Applications. Springer, Singapore. https://doi.org/10.1007/978-981-10-4702-2_9

Download citation

Publish with us

Policies and ethics