Skip to main content
Log in

On the K-theory of \(\mathbb {Z}\)-categories

  • Published:
Journal of Homotopy and Related Structures Aims and scope Submit manuscript

Abstract

We establish connections between the concepts of Noetherian, regular coherent, and regular n-coherent categories for \(\mathbb {Z}\)-linear categories with finitely many objects and the corresponding notions for unital rings. These connections enable us to obtain a negative K-theory vanishing result, a fundamental theorem, and a homotopy invariance result for the K-theory of \(\mathbb {Z}\)-linear categories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In [3], the word right is omitted, but we have chosen to include it in our notation.

References

  1. Antieau, B., Gepner, D., Heller, J.: K-theoretic obstructions to bounded t-structures. Invent. Math. 216(1), 241–300 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  2. Auslander, M.: Coherent functors. In: Proc. Conf. Categorical Algebra. La Jolla, Calif. 1965. Springer, New York, pp. 189–231 (1966)

  3. Bartels, A., Lück, W.: Vanishing of Nil-terms and negative K-theory for additive categories. arXiv:2002.03412

  4. Beligiannis, A.: On the Frey categories of an additive category. Homol. Homot. Appl. 2(11), 147–185 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bravo, D., Gillespie, J., Pérez, M.: Locally type FPn and \(n\)-coherent categories. arXiv:1908.10987

  6. Bravo, D., Odabasi, S., Parra, C., Pérez, M.: Torsion and Torsion-Free classes from objects of finite type in Grothendieck categories. J. Algebra 608, 412–444 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cortiñas, G., Ellis, E.: Isomorphism conjectures with proper coefficients. J. Pure Appl. Algebra 218(7), 1224–1263 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Costa, D.L.: Parameterizing families of non-Noetherian rings. Commun. Algebra 22(10), 3997–4011 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dell’Ambrogio, I., Stevenson, G.: On the derived category of a graded commutative noetherian ring. J. Algebra 373, 356–376 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ellis, E., Parra, R.: K-theory of n-coherent rings. J. Algebra Appl. 21(12), 2350007 (2022). https://doi.org/10.1142/S021949882350007X

  11. Freyd, P.: Representations in Abelian categories. In: Proc. Conf. on Categorical Algebra, La Jolla, 1965. Springer, New York, pp. 95–120 (1966)

  12. García, J.L., Gómez Sánchez, P.L., Martínez Hernández, J.: Locally finitely presented categories and functor rings Osaka. J. Math. 42, 137–187 (2005)

    MATH  Google Scholar 

  13. Gillespie, J.: Models for homotopy categories of injectives and Gorenstein injectives. Commun. Algebra 45(6), 2520–2545 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Neeman, A.: A counterexample to vanishing conjectures for negative K-theory. Invent. Math. 225(2), 427–452 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  15. Parra, C., Saorin, M., Virilli, S.: Torsion pairs in categories of modules over a preadditive category. Bull. Iran. Math. Soc. 47, 1135–1171 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  16. Pedersen, E.K., Weibel, C.A.: A nonconnective delooping of algebraic K-theory. In: Algebraic and Geometric Topology, Proc. Conf., New Brunswick/USA 1983, Lect. Notes Math., vol. 1126, pp. 166–181 (1985)

  17. Schlichting, M.: Negative K-theory of derived categories. Math. Z. 253(1), 97–134 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Swan, R.G.: K-theory of coherent rings. J. Algebra Appl. 18(9), 1950161 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  19. Wisbauer, R.: Foundations of module and ring theory. A handbook for study and research. Revised and translated from the 1988 German edition. Algebra, Logic and Applications, vol. 3. Gordon and Breach Science Publishers, Philadelphia (1991)

Download references

Acknowledgements

Eugenia Ellis was partially supported by ANII. Both authors were partially supported by PEDECIBA, CSIC and by the grant ANII FCE-3-2018-1-148588. We would like to thank Willie Cortiñas and Carlos E. Parra for their interesting comments and discussions. We also thank to the referee for their corrections and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugenia Ellis.

Additional information

Communicated by Guillermo Cortinas.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ellis, E., Parra, R. On the K-theory of \(\mathbb {Z}\)-categories. J. Homotopy Relat. Struct. 18, 455–476 (2023). https://doi.org/10.1007/s40062-023-00333-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40062-023-00333-2

Keywords

Navigation