Skip to main content
Log in

Growth of hexagonal-shape Si on a 4H–SiC substrate by mixed-source hydride vapor phase epitaxy

  • Original Paper - Condensed Matter
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The combination of Si and 4H–SiC has potential applications in heterojunction diodes, bipolar-junction transistors, and optoelectronic devices. However, growing crystalline Si on 4H–SiC is challenging owing to a lattice mismatch of approximately 20% between Si and 4H–SiC. In this study, we discuss the growth of a Si epilayer by an Al-based nanostructure cluster grown on a 4H–SiC substrate using mixed-source hydride vapor phase epitaxy (HVPE). The results of the Raman spectra of the Al-based nanostructure cluster and hexagonal-shape Si and high-resolution X-ray diffraction patterns of the Si epilayer show that the hexagonal-shape Si epilayer exhibit a hexagonal 2H–Si structure belonging to the P63/mmc (D46h) space group. The mixed-source HVPE method enables the growth of crystalline Si on a 4H–SiC substrate despite the significant lattice mismatch between the 4H–SiC substrate and Si structures. Therefore, the potential application of the novel Si/SiC structure can be achieved using a mixed-source HVPE growth method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. X. She, A.Q. Huang, Ó. Lucía, B. Ozpineci, IEEE Trans. Ind. Electron. (2017). https://doi.org/10.1109/TIE.2017.2652401

    Article  Google Scholar 

  2. K. Tachiki, M. Kaneko, T. Kimoto, Appl. Phys. Express (2021). https://doi.org/10.35848/1882-0786/abdcd9

    Article  Google Scholar 

  3. T. Kobayashi, T. Okuda, K. Tachiki, K. Ito, Y. Matsushita, T. Kimoto, Appl. Phys. Express (2020). https://doi.org/10.35848/1882-0786/ababed

    Article  Google Scholar 

  4. J.P. Henning, K.J. Schoen, M.R. Melloch, J.M. Woodall, J.A. Cooper, J. Electron. Mater. (1998). https://doi.org/10.1007/s11664-998-0403-x

    Article  Google Scholar 

  5. S. Nishida, J. Liang, T. Hayashi, M. Arai, N. Shigekawa, Jpn. J. Appl. Phys. (2015). https://doi.org/10.7567/jjap.54.030210

    Article  Google Scholar 

  6. N. Shigekawa, S. Shimizu, J. Liang, M. Shingo, K. Shiojima, M. Arai, Jpn. J. Appl. Phys. (2018). https://doi.org/10.7567/jjap.57.02be04

    Article  Google Scholar 

  7. L. Li, Z. Chen, W. Liu, W. Li, Electron. Lett. (2012). https://doi.org/10.1049/el.2012.1471

    Article  Google Scholar 

  8. F. Triendl, G. Pfusterschmied, S. Schwarz, W. Artner, U. Schmid, Mater. Sci. Semicond. Process. (2021). https://doi.org/10.1016/j.mssp.2021.105763

    Article  Google Scholar 

  9. A.P. Tomas, M.R. Jennings, M. Davis, J.A. Covington, P.A. Mawby, V. Shah, T. Grasby, J. Appl. Phys. (2007). https://doi.org/10.1063/1.2752148

    Article  Google Scholar 

  10. C. Yang, Z. Chen, J. Hu, Z. Ren, S. Lin, Mater. Res. Bull. (2012). https://doi.org/10.1016/j.materresbull.2012.03.018

    Article  Google Scholar 

  11. L. Xie, Z. Chen, L. Li, C. Yang, X. He, N. Ye, Appl. Surf. Sci. (2012). https://doi.org/10.1016/j.apsusc.2012.07.101

    Article  Google Scholar 

  12. S. Fan, Z. Chen, X. He, L. Li, Solid State Commun. (2014). https://doi.org/10.1016/j.ssc.2013.09.018

    Article  Google Scholar 

  13. R.D. King-Smith, R.J. Needs, V. Heine, M.J. Hodgson, EPL (2007). https://doi.org/10.1209/0295-5075/10/6/011

    Article  Google Scholar 

  14. L.W. Snyman, M. du Plessis, E. Seevinck, H. Aharoni, IEEE Electron Device Lett. (1999). https://doi.org/10.1109/55.806102

    Article  Google Scholar 

  15. S.P. Duttagupta, C. Peng, P.M. Peng, S.K. Kurinec, T.N. Blanton, J. Vac. Sci. Technol. B (1995). https://doi.org/10.1116/1.588242

    Article  Google Scholar 

  16. K.D. Hirschman, L. Tsybeskov, S.P. Duttagupta, P.M. Fauchet, Nat. (1996). https://doi.org/10.1038/384338a0

    Article  Google Scholar 

  17. E.M.T. Fadaly, A. Dijkstra, J.R. Suckert, D. Ziss, M.A.J. van Tilburg, C. Mao, Y. Ren, V.T. van Lange, K. Korzun, S. Kölling, M.A. Verheijen, D. Busse, C. Rödl, J. Furthmüller, F. Bechstedt, J. Stangl, J.J. Finley, S. Botti, J.E.M. Haverkort, E.P.A.M. Bakkers, Nat. (2020). https://doi.org/10.1364/iprsn.2018.itu4i.5

    Article  Google Scholar 

  18. R.H. Wentorf, J.S. Kasper, Sci. (1963). https://doi.org/10.1126/science.139.3552.338.b

    Article  Google Scholar 

  19. S.Q. Wang, H.Q. Ye, J. Phys. Matter (2003). https://doi.org/10.1088/0953-8984/15/30/312

    Article  Google Scholar 

  20. A. Fissel, E. Bugiel, C.R. Wang, H.J. Osten, J. Cryst. Growth (2006). https://doi.org/10.1016/j.jcrysgro.2006.02.009

    Article  Google Scholar 

  21. H.I.T. Hauge, M.A. Verheijen, S. Conesa-Boj, T. Etzelstorfe, M. Watzinger, D. Kriegner, I. Zardo, C. Fasolato, F. Capitani, P. Postorino, S. Kölling, A. Li, S. Assali, J. Stangl, E.P.A.M. Bakkers, Nano Lett. (2015). https://doi.org/10.1021/acs.nanolett.5b01939

    Article  PubMed  Google Scholar 

  22. M. Amato, T. Kaewmaraya, A. Zobelli, M. Palummo, R. Rurali, Nano Lett. (2016). https://doi.org/10.1021/acs.nanolett.6b02362

    Article  PubMed  Google Scholar 

  23. A. De, C.E. Pryor, J. Phys. Matter (2014). https://doi.org/10.1088/0953-8984/26/4/045801

    Article  Google Scholar 

  24. T. Kaewmaraya, L. Vincent, M. Amato, J. Phys. Chem. (2017). https://doi.org/10.1021/acs.jpcc.6b12782

    Article  Google Scholar 

  25. C. Rödl, T. Sander, F. Bechstedt, J. Vidal, P. Olsson, S. Laribi, J.F. Guillemoles, Phys. Rev. B (2015). https://doi.org/10.1103/PhysRevB.92.045207

    Article  Google Scholar 

  26. S. Pandolfi, C. Renero-Lecuna, Y.L. Godec, B. Baptiste, N. Mengirl, M. Lazzeri, C. Gervais, K. Spektor, W.A. Crichton, O.O. Kurakevych, NanoLett. (2018). https://doi.org/10.1021/acs.nanolett.8b02816

    Article  Google Scholar 

  27. B.R. Wu, Phys. Rev. B (2000). https://doi.org/10.1103/PhysRevB.61.5

    Article  Google Scholar 

  28. H.S. Ahn, S.W. Kim, G.S. Lee, K.H. Kim, J.H. Lee, D.H. Ha, Y.T. Chun, S. Ryu, Semicond. Sci. Technol. (2021). https://doi.org/10.1088/1361-6641/ac17a8

    Article  Google Scholar 

  29. H. Olijnyk, S. Sikka, W. Holzapfel, Phys. Lett. A (1984). https://doi.org/10.1016/0375-9601(84)90219-6

    Article  Google Scholar 

  30. C.C. Yang, J.C. Li, Q. Jiang, Solid State Comm. (2004). https://doi.org/10.1016/j.ssc.2003.11.020

    Article  Google Scholar 

  31. F.J. Lopez, U. Givan, J.G. Connell, L.J. Lauhon, ACS Nano (2011). https://doi.org/10.1021/nn2031337

    Article  PubMed  Google Scholar 

  32. N. Shin, M. Chi, J.Y. Howe, M.A. Filler, Nano Lett. (2013). https://doi.org/10.1021/nl3042728

    Article  PubMed  Google Scholar 

  33. M. Raya-Moreno, H. Aramberri, J.A. Seijas-Bellido, X. Cartoixa, R. Rurali, Appl. Phys. Lett. (2017). https://doi.org/10.1063/1.4985278

    Article  Google Scholar 

  34. R.O. Piltz, J.R. Maclean, S.J. Clark, G.J. Ackland, P.D. Hatton, J. Crain, Phys. Rev. B (1995). https://doi.org/10.1103/PhysRevB.52.4072

    Article  Google Scholar 

  35. A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S.W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. Mondia, G.A. Ozin, O. Toader, H.M. Driel, Nat. (2000). https://doi.org/10.1038/35013024

    Article  Google Scholar 

  36. S. Kodiyalam, R.K. Kalia, H. Kikuchi, A. Nakano, F. Shimojo, P. Vashishta, Phys. Rev. Lett. (2001). https://doi.org/10.1103/PhysRevLett.86.55

    Article  PubMed  Google Scholar 

  37. C. Raffy, J. Furthmuller, F. Bechstedt, Phys. Rev. B (2002). https://doi.org/10.1103/PhysRevB.66.075201

    Article  Google Scholar 

  38. F. Triendl, G. Pfusterschmied, G. Fleckl, S. Schwarz, U. Schmid, Thin Solid Films (2020). https://doi.org/10.1016/j.tsf.2020.137837

    Article  Google Scholar 

  39. Y. Zang, L. Li, J. An, L. Huang, H.L. Jin, Mater. Lett. (2017). https://doi.org/10.1016/j.matlet.2016.11.079

    Article  Google Scholar 

  40. J.J. Wierer Jr., A. David, M.M. Megans, Nat. Photon. (2009). https://doi.org/10.1038/nphoton.2009.21

    Article  Google Scholar 

  41. G. Yadav, S. Dewan, M. Tomar, Opt. Mater. (2022). https://doi.org/10.1016/j.optmat.2022.112149

    Article  Google Scholar 

  42. P.R. Tavernier, E.V. Etzkorn, Y. Wang, D.R. Clarke, Appl. Phys. Lett. (2000). https://doi.org/10.1063/1.1311600

    Article  Google Scholar 

  43. T. Paskova, E.M. Goldys, R. Yakimova, E.B. Svedberg, A. Henry, B. Monemar, J. Crystal Growth (2000). https://doi.org/10.1016/S0022-0248(99)00487-X

    Article  Google Scholar 

  44. H.S. Ahn, K.H. Kim, M. Yang, J.Y. Yi, H.J. Lee, J.H. Chang, H.S. Kim, S.W. Kim, S.C. Lee, Y. Honda, M. Yamaguchi, N. Sawaki, Phys. stat. sol. (2005). https://doi.org/10.1002/pssa.200420001

    Article  Google Scholar 

  45. K.H. Kim, G.S. Lee, H.S. Ahn, I. Jeon, C.R. Cho, S. Lee, S.W. Kim, New Phys Sae Mulli (2020). https://doi.org/10.3938/NPSM.70.315

    Article  Google Scholar 

  46. K.H. Kim, G.S. Lee, H.S. Ahn, J.H. Lee, J. Kim, Y.T. Chun, M. Yang, S.N. Yi, S.L. Hwang, S.W. Kim, SemiCond. Sci. Technol. (2022). https://doi.org/10.1088/1361-6641/ac579c

    Article  Google Scholar 

  47. J. Crain, G.J. Ackland, J.R. Maclean, R.O. Piltz, P.D. Hatton, G.S. Pawley, Phys. Rev. B (1994). https://doi.org/10.1103/PhysRevB.50.13043

    Article  Google Scholar 

  48. G. Lucazeau, L. Abello, J. Mater. Res. (1997). https://doi.org/10.1557/JMR.1997.0302

    Article  Google Scholar 

  49. S. Piscanec, M. Cantoro, A.C. Ferrari, J.A. Zapien, Y. Lifshitz, S.T. Lee, S. Hofmann, J. Robertson, Phys. Rev. B (2003). https://doi.org/10.1103/PhysRevB.68.241312

    Article  Google Scholar 

  50. Y.X. Zhang, R.K. Kang, D.M. Guo, Z.J. Jin, Key Eng. Mater. (2006). https://doi.org/10.4028/www.scientific.net/KEM.304-305.241

    Article  Google Scholar 

  51. H. Jian, M. Dayan, X. Kewei, Rare Metal. Mater. Eng. (2015). https://doi.org/10.1016/S1875-5372(16)60020-6

    Article  Google Scholar 

  52. M.I. den Hertog, C. Cayron, P. Gentile, F. Dhalluin, F. Oehler, T. Baron, J.L. Rouviere, Nanotechnology (2012). https://doi.org/10.1088/0957-4484/23/2/025701

    Article  Google Scholar 

  53. S. Nakashima, H. Harima, Phys. Stat. Sol. (1997). https://doi.org/10.1002/1521-396X(199707)162:1%3C39::AID-PSSA39%3E3.0.CO;2-L

    Article  Google Scholar 

  54. A.A. Lebedev, G.A. Oganesyan, V.V. Kozlovski, I.A. Eliseyev, P.V. Bulat, Crystals (2019). https://doi.org/10.3390/cryst9020115

    Article  Google Scholar 

  55. M. Asghar, M.Y. Shahid, F. Iqbal, K. Fatima, M.A. Nawaz, H.M. Arbi, R. Tsu, AIP Adv. (2016). https://doi.org/10.1063/1.4943399

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Korea Institute for Advancement of Technology (KIAT) grant funded by the Korea Government (MOTIE) (P0012451, The Competency Development Program for Industry Specialist). In addition, this research was partially supported by the Korea Evaluation Institute of Industrial Technology (KEIT) grant funded by the Korea government (MOTIE) (RS-2022-00154720, Technology Innovation Program Development of next-generation power semiconductor based on Si-on-SiC structure).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kyoung Hwa Kim, Hyung Soo Ahn or Sang-Mo Koo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, S., Mun, S., Kim, K.H. et al. Growth of hexagonal-shape Si on a 4H–SiC substrate by mixed-source hydride vapor phase epitaxy. J. Korean Phys. Soc. 84, 198–207 (2024). https://doi.org/10.1007/s40042-023-00957-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-023-00957-w

Keywords

Navigation