Skip to main content
Log in

Surface plasmon resonance absorption peak control through regulation of particle size and concentration of an indium tin oxide nanoparticle solution

  • Original Paper - Condensed Matter
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

This study investigates the possibility of tuning the surface plasmon resonance (SPR) absorption peak frequency in the near-infrared (NIR) region by changing the size and concentration of indium tin oxide nanoparticles (ITO NPs). Dispersion solutions containing ITO NPs with dimensions of 18, 50, and 100 nm were prepared in isopropanol and deposited on a Si substrate by spin coating. The position of the SPR peak varied depending on the size of the ITO NPs and was slightly shifted according to the dispersion concentration. A significant effect of the surface roughness of the sample on the shift of the SPR peak was confirmed using atomic force microscopy measurements. Subsequently, a new SPR peak was obtained by mixing ITO NPs with different sizes. Thus, in this study, by controlling the size, concentration, and ratio of ITO NPs, the SPR absorption peak frequency was easily controlled in a wider NIR region compared with previous studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A. Laurenčíková, P. Eliáš, S. Hasenöhrl, J. Kováč Jr., R. Szobolovszký, J. Novák, Appl. Surf. Sci. 461, 149 (2018)

    Article  ADS  Google Scholar 

  2. C. Zhu, G. Meng, Q. Huang, Z. Zhang, Q. Xu, G. Liu, Z. Huang, Z. Chu, Chem. Commun. 14, 2709 (2011)

    Article  Google Scholar 

  3. C. Wang, D. Astruc, Chem. Sov. Rev. 43, 2709 (2014)

    Google Scholar 

  4. Z. Zhan, J. An, H. Zhang, R.V. Hansen, L. Zheng, A.C.S. Appl, Mater. Interfaces 6, 1139 (2014)

    Article  Google Scholar 

  5. A.V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G.A. Wurtzm, R. Atkinson, R. Pollard, V.A. Podolskiy, A.V. Zayats, Nat. Mater. 8, 867 (2009)

    Article  ADS  Google Scholar 

  6. I.H. El-Sayed, X. Huang, M.A. El-Sayed, Nano Lett. 5, 829 (2005)

    Article  ADS  Google Scholar 

  7. D. Joseph, Y.S. Huh, Y.-K. Han, Sens. Actuator B-Chem. 288, 120 (2019)

    Article  Google Scholar 

  8. H.Y. Lee, M.S. Kwak, K.-W. Lim, H.S. Ahn, G.-T. Hwang, D.H. Ha, R.A. Taylor, S.N. Yi, Opt. Express 29, 35161 (2021)

    Article  ADS  Google Scholar 

  9. H.Y. Lee, M.S. Kwak, G.-T. Hwang, H.S. Ahn, D.H. Ha, S.N. Yi, Appl. Surf. Sci. 596, 153588 (2022)

    Article  Google Scholar 

  10. E. Petryayeva, U.J. Krull, Anal. Chim. Acta 706, 8 (2011)

    Article  Google Scholar 

  11. K.A. Willets, R.P.V. Duyne, Annu. Rev. Phys. Chem. 58, 267 (2007)

    Article  ADS  Google Scholar 

  12. E. Hutter, J.H. Fendler, Adv. Mater. 16, 1685 (2004)

    Article  Google Scholar 

  13. P.Q.T. Do, V.T. Huong, N.T.T. Phuong, T.-H. Nguyen, H.K.T. Ta, H. Ju, T.B. Phan, V.-D. Phung, K.T.L. Trinh, N.H.T. Tran, RSC Adv. 10, 30858 (2020)

    Article  ADS  Google Scholar 

  14. J.-H. Ryu, H.Y. Lee, J.-Y. Lee, H.-S. Kim, S.-H. Kim, H.S. Ahn, D.H. Ha, S.N. Yi, Appl. Sci. 11, 11855 (2021)

    Article  Google Scholar 

  15. S.-H. Kim, H.Y. Lee, J.-H. Ryu, J.-Y. Lee, H.-S. Kim, H.S. Ahn, D.H. Ha, S.N. Yi, J Mater Sci. 57, 7547 (2022)

    Article  ADS  Google Scholar 

  16. K.R. Choundhury, Y. Sahoo, P.N. Prasad, Adv. Mater. 17, 2877 (2005)

    Article  Google Scholar 

  17. M.P. Mikhailova, I.A. Andreev, E.V. Kunitsyna, Y.P. Yakovlev, Proc. of SPIE 7355, 735511 (2009)

    Article  ADS  Google Scholar 

  18. S. Liebl, R. Wiedenmann, A. Ganser, P. Schmitz, M.F. Zaeh, Phys. Procedia 56, 591 (2014)

    Article  ADS  Google Scholar 

  19. D. Gao, C. Guan, Y. Wen, X. Zhong, L. Yuan, Opt. Commun. 313, 94 (2014)

    Article  ADS  Google Scholar 

  20. T. Huang, Plasmonics 12, 583 (2017)

    Article  Google Scholar 

  21. B.F. Jones, P. Plassmann, IEEE Eng Med Biol Mag. 21, 41 (2002)

    Article  Google Scholar 

  22. I.J. Aldave, P.V. Bosom, L.V. González, I. López de Santiago, B. Vollheim, L. Krausz, M. Georges, Infrared Phys. Technol. 61, 167 (2013)

    Article  ADS  Google Scholar 

  23. W. Wei, R. Hong, M. Jing, W. Shao, C. Tao, D. Zhang, Thickness-dependent surface plasmon resonance of ITO nanoparticles for ITO/In-Sn bilayer structure. Nanotechnology 29, 015705 (2017)

    Article  ADS  Google Scholar 

  24. M. Kanehara, H. Koike, T. Yoshinaga, T. Teranishi, J. Am. Chem. Soc. 131, 17736 (2009)

    Article  Google Scholar 

  25. K. Ma, N. Zhou, M. Yuan, D. Li, D. Yang, Nanoscale Res. Lett. 9, 547 (2014)

    Article  Google Scholar 

  26. C. Huang, Y. Hao, J. Nanosci. Nanotechnol. 11, 3701 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2022R1F1A1069919) and Korea Institute for Advancement of Technology (KIAT) grant funded by the Korea Government (MOTIE) (P0012451, The Competency Development Program for Industry Specialist).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sam Nyung Yi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, JY., Lee, H.Y., Ryu, JH. et al. Surface plasmon resonance absorption peak control through regulation of particle size and concentration of an indium tin oxide nanoparticle solution. J. Korean Phys. Soc. 82, 473–478 (2023). https://doi.org/10.1007/s40042-023-00721-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-023-00721-0

Keywords

Navigation