Skip to main content
Log in

Phase transitions in the one-dimensional ionic Hubbard model

  • Original Paper
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We study quantum phase transitions by measuring the bond energy, the number density, and the half-chain entanglement entropy in the one-dimensional ionic Hubbard model. By using the matrix product operator to perform the infinite density matrix renormalization group, we obtain the ground states in the canonical form of matrix product states. Depending on the chemical potential and the staggered potential, the number density and the half-chain entanglement entropy shows clear signatures of a Mott transition. Our results confirm the success of using the matrix product operator method to investigate itinerant fermion systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A. Osterloh, L. Amico, G. Falci, R. Fazio, Nature 416, 608 (2002)

    Article  ADS  Google Scholar 

  2. T.J. Osborne, M.A. Nielsen, Phys. Rev. A 66, 032110 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  3. S. Sachdev, Quantum phase transitions (Cambridge University Press, New York, 2011)

    Book  Google Scholar 

  4. J. Eisert, M. Cramer, M.B. Plenio, Rev. Mod. Phys. 82, 277 (2010)

    Article  ADS  Google Scholar 

  5. M.C. Cha, M.H. Chung, Phys. B 536, 701 (2018)

    Article  ADS  Google Scholar 

  6. L. Tagliacozzo, T.R. de Oliveira, S. Iblisdir, J.I. Latorre, Phys. Rev. B 78, 024410 (2008)

    Article  ADS  Google Scholar 

  7. F. Pollmann, A.M. Turner, E. Berg, M. Oshikawa, Phys. Rev. B 81, 064439 (2010)

    Article  ADS  Google Scholar 

  8. B. Pirvu, G. Vidal, F. Verstraete, L. Tagliacozzo, Phys. Rev. B 86, 075117 (2012)

    Article  ADS  Google Scholar 

  9. M. Pino, J. Prior, A.M. Somoza, D. Jaksch, S.R. Clark, Phys. Rev. A 86, 023631 (2012)

    Article  ADS  Google Scholar 

  10. Gu Shi-Jian, Shu-Sa Deng, You-Quan Li, Hai-Qing Lin, Phys. Rev. Lett. 93, 086402 (2004)

    Article  ADS  Google Scholar 

  11. D. Larsson, H. Johannesson, Phys. Rev. Lett. 95, 196406 (2005)

    Article  ADS  Google Scholar 

  12. F. Iemini, T.O. Maciel, R.O. Vianna, Phys. Rev. B 92, 075423 (2015)

    Article  ADS  Google Scholar 

  13. M.C. Cha, Phys. Rev. B 98, 235161 (2018)

    Article  ADS  Google Scholar 

  14. Ö. Legeza, J. Sólyom, Phys. Rev. Lett. 96, 116401 (2006)

    Article  ADS  Google Scholar 

  15. M.F. Parsons, F. Huber, A. Mazurenko, C.S. Chiu, W. Setiawan, K. Wooley-Brown, S. Blatt, M. Greiner, Phys. Rev. Lett. 114, 213002 (2015)

    Article  ADS  Google Scholar 

  16. L.W. Cheuk, M.A. Nichols, M. Okan, T. Gersdorf, V.V. Ramasesh, W.S. Bakr, T. Lompe, M.W. Zwierlein, Phys. Rev. Lett. 114, 193001 (2015)

    Article  ADS  Google Scholar 

  17. M. Schreiber, S.S. Hodgman, P. Bordia, H.P. Lüschen, M.H. Fischer, R. Vosk, E. Altman, U. Schneider, I. Bloch, Science 21, 842 (2015)

    Article  ADS  Google Scholar 

  18. F.H.L. Essler, H. Frahm, F. Göhmann, A. Klümper, V.E. Korepin, The one-dimensional Hubbard model (Cambridge University Press, New York, 2005)

    Book  Google Scholar 

  19. M. Hafez-Torbati, N.A. Drescher, G.S. Uhrig, Phys. Rev. B 89, 245126 (2014)

    Article  ADS  Google Scholar 

  20. S. Bag, A. Garg, H.R. Krishnamurthy, Phys. Rev. B 91, 235108 (2015)

    Article  ADS  Google Scholar 

  21. H.F. Lin, H.D. Liu, H.S. Tao, W.M. Liu, Sci. Rep. 5, 9810 (2015)

    Article  ADS  Google Scholar 

  22. K. Bouadim, N. Paris, F. Hebert, G.G. Batrouni, R.T. Scalettar, Phys. Rev. B 76, 085112 (2007)

    Article  ADS  Google Scholar 

  23. A.P. Kampf, M. Sekania, G.I. Japaridze, Ph Brune, J. Phys.: Conden. Matt. 15, 5895 (2003)

    ADS  Google Scholar 

  24. D.G. Angelakis, M. Huo, E. Kyoseva, L.C. Kwek, Phys. Rev. Lett. 106, 153601 (2011)

    Article  ADS  Google Scholar 

  25. U. Schollwöck, Annals Phys. 326, 96 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  26. I.P. McCulloch, arXiv:0804.2509 (2008)

  27. C. Yang, A.N. Kocharian, Y.L. Chiang, J. Phys.: Conden. Matt. 12, 7433 (2000)

    ADS  Google Scholar 

  28. N. Bultinck, D.J. Williamson, J. Haegeman, F. Verstraete, Phys. Rev. B 95, 075108 (2017)

    Article  ADS  Google Scholar 

  29. M.H. Chung, E. Orignac, D. Poilblanc, S. Capponi, Phys. B 604, 412665 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (Grant No. NRF-2017R1D1A1A0201845). The author would like to thank M. C. Cha for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myung-Hoon Chung.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chung, MH. Phase transitions in the one-dimensional ionic Hubbard model. J. Korean Phys. Soc. 78, 700–705 (2021). https://doi.org/10.1007/s40042-021-00099-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-021-00099-x

Keywords

Navigation