Skip to main content
Log in

Quantum phase transitions in the Bose Hubbard model with pairing potential

  • Original Paper - Condensed Matter
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We study quantum phase transitions by measuring the energy level crossing and the number density in the one-dimensional Bose Hubbard model with pairing potential. Using the matrix product operator and the matrix product state, we perform the infinite density matrix renormalization group to determine the ground states. Depending on the chemical potential and the pairing potential, the number density shows clear signatures of the Mott transition. Our results confirm that the U(1)-phase symmetry breaking is associated with superfluidity in the Bose Hubbard model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. S. Sachdev, Quantum Phase Transitions (Cambridge University Press, New York, 2011)

    Book  Google Scholar 

  2. L. Tagliacozzo, T.R. de Oliveira, S. Iblisdir, J.I. Latorre, Phys. Rev. B 78, 024410 (2008)

    Article  ADS  Google Scholar 

  3. F. Pollmann, A.M. Turner, E. Berg, M. Oshikawa, Phys. Rev. B 81, 064439 (2010)

    Article  ADS  Google Scholar 

  4. B. Pirvu, G. Vidal, F. Verstraete, L. Tagliacozzo, Phys. Rev. B 86, 075117 (2012)

    Article  ADS  Google Scholar 

  5. M. Pino, J. Prior, A.M. Somoza, D. Jaksch, S.R. Clark, Phys. Rev. A 86, 023631 (2012)

    Article  ADS  Google Scholar 

  6. Gu. Shi-Jian, Shu-Sa. Deng, You-Quan. Li, Hai-Qing. Lin, Phys. Rev. Lett. 93, 086402 (2004)

    Article  ADS  Google Scholar 

  7. D. Larsson, H. Johannesson, Phys. Rev. Lett. 95, 196406 (2005)

    Article  ADS  Google Scholar 

  8. F. Iemini, T.O. Maciel, R.O. Vianna, Phys. Rev. B 92, 075423 (2015)

    Article  ADS  Google Scholar 

  9. M.C. Cha, Phys. Rev. B 98, 235161 (2018)

    Article  ADS  Google Scholar 

  10. M.H. Chung, E. Orignac, D. Poilblanc, S. Capponi, Physica B 604, 412665 (2021)

    Article  Google Scholar 

  11. M.F. Parsons, F. Huber, A. Mazurenko, C.S. Chiu, W. Setiawan, K. Wooley-Brown, S. Blatt, M. Greiner, Phys. Rev. Lett. 114, 213002 (2015)

    Article  ADS  Google Scholar 

  12. E. Zohar, J.I. Cirac, B. Reznik, Phys. Rev. A 88, 023617 (2013)

    Article  ADS  Google Scholar 

  13. V.W. Scarola, L. Pollet, J. Oitmaa, M. Troyer, Phys. Rev. Lett. 102, 135302 (2009)

    Article  ADS  Google Scholar 

  14. E. Dagotto, A. Moreo, F. Ortolani, D. Poilblanc, J. Riera, Phys. Rev. B 45, 10741 (1992)

    Article  ADS  Google Scholar 

  15. M. Qin, T. Schäfer, S. Andergassen, P. Corboz, E. Gull, Annu. Rev. Condens. Matter Phys. 13, 1 (2022)

    Article  Google Scholar 

  16. B.-X. Zheng, C.-M. Chung, P. Corboz, G. Ehlers, M.-P. Qin, R.M. Noack, H. Shi, S.R. White, S. Zhang, G.K.-L. Chan, Science 358, 1155 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  17. S.R. White, Phys. Rev. Lett. 69, 2863 (1992)

    Article  ADS  Google Scholar 

  18. S. Östlund, S. Rommer, Phys. Rev. Lett. 75, 3537 (1995)

    Article  ADS  Google Scholar 

  19. U. Schollwöck, Ann. Phys. 326, 96 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  20. D. Pérez-García, F. Verstraete, M.M. Wolf, J.I. Cirac, Quantum Inf. Comput. 8, 0650 (2008)

    MathSciNet  Google Scholar 

  21. G. Vidal, Phys. Rev. Lett. 99, 220405 (2007)

    Article  ADS  Google Scholar 

  22. I.P. McCulloch. e-print arXiv:0804.2509 (2008)

  23. C. Yang, A.N. Kocharian, Y.L. Chiang, J. Phys. Condens. Matter 12, 7433 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (Grant No. NRF-2021R1F1A1052347). The author would like to thank M. C. Cha for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myung-Hoon Chung.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chung, MH. Quantum phase transitions in the Bose Hubbard model with pairing potential. J. Korean Phys. Soc. 80, 1143–1147 (2022). https://doi.org/10.1007/s40042-022-00473-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-022-00473-3

Keywords

Navigation