Skip to main content
Log in

Exact diagonalization and quantum Monte Carlo study of an ionic Hubbard model in two dimensions

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We study quantum phase transitions of an ionic Hubbard model in two dimensions. The ionic Hubbard model explains the quantum states of strongly correlated electrons under the influence of checkerboard-type alternating chemical potentials. For a given amplitude of the alternating potentials Δ, we obtain quantum ground states as we tune the local repulsive energy U between a spin-up electron and a spin-down electron by using an exact diagonalization method of a modified Lanczos algorithm. The system undergoes a quantum phase transition from a band insulator to a Mott insulator as U increases at half-filling. We find the signature of a quantum phase transition by investigating the behavior of ground-state energies and that of double occupancies for the size of L × L = 4 × 4, which was the largest possible lattice in this work. We compare our results with those of quantum Monte Carlo simulations employing the Hirsch-Fye algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. von Klitzing, G. Dorda and M. Pepper, Phys. Rev. Lett. 45, 494 (1980)

    Article  ADS  Google Scholar 

  2. C. Tsui, H. L. Stormer and A. C. Gossard, Phys. Rev. Lett. 48, 1559 (1982).

    Article  ADS  Google Scholar 

  3. J. G. Bednorz and K. A. Müller, Z. Phys. B 64, 189 (1986).

    Article  ADS  Google Scholar 

  4. M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).

    Article  ADS  Google Scholar 

  5. M. C. Gutzwiller, Phys. Rev. Lett. 10, 159 (1963).

    Article  ADS  Google Scholar 

  6. J. Kanamori, Prog. Theor. Phys. 30, 275 (1963).

    Article  ADS  Google Scholar 

  7. J. Hubbard, Proc. R. Soc. A 276, 237 (1963).

    Article  ADS  Google Scholar 

  8. E. Dagotto, Rev. Mod. Phys. 66, 763 (1994).

    Article  ADS  Google Scholar 

  9. E. H. Lieb and F. Y. Wu, Phys. Rev. Lett. 20, 1445 (1968); Erratum, ibid. 21, 192 (1968).

    Article  ADS  Google Scholar 

  10. W. Metzner and D. Vollhardt, Phys. Rev. Lett. 62, 324 (1989).

    Article  ADS  Google Scholar 

  11. J. Spalek and A. M. Olés, Physica B 86-88, 375 (1977).

    Article  Google Scholar 

  12. J. Hubbard and J. B. Torrance, Phys. Rev. Lett. 47, 1750 (1981).

    Article  ADS  Google Scholar 

  13. E. R. Gagliano, E. Dagotto, A. Moreo and F. C. Alcaraz, Phys. Rev. B 34, 1677 (1986).

    Article  ADS  Google Scholar 

  14. E. Dagotto, A. Moreo, F. Ortolani, D. Poilblanc and J. Riera, Phys. Rev. B 45, 10741 (1992).

    Article  ADS  Google Scholar 

  15. S. Sachdev, Quantum Phase Transitions (Cambridge University Press, Cambridge, 1999).

    MATH  Google Scholar 

  16. D. Baeriswyl and W. von D. Linden, Int. J. Mod. Phys. B 5, 999 (1991).

    Article  ADS  Google Scholar 

  17. K. Bouadim, N. Paris, F. Hébert, G. G. Batrouni and R. T. Scalettar, Phys. Rev. B 76, 085112 (2007).

    Article  ADS  Google Scholar 

  18. B. Martinie, arXiv:1002.0325 (2013).

  19. L. Craco, P. Lombardo, R. Hayn, G. I. Japaridze and E. Müller-Hartmann, Phys. Rev. B 78, 075121 (2008).

    Article  ADS  Google Scholar 

  20. J. E. Hirsch and R. M. Fye, Phys. Rev. Lett. 56, 2521 (1986).

    Article  ADS  Google Scholar 

  21. http://openmp.org.

  22. http://software.intel.com/en-us/articles/non-commercial- software-download.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-Woo Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, J., Lee, JW. Exact diagonalization and quantum Monte Carlo study of an ionic Hubbard model in two dimensions. Journal of the Korean Physical Society 70, 494–498 (2017). https://doi.org/10.3938/jkps.70.494

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.70.494

Keywords

Navigation