Skip to main content
Log in

An Analysis Using the Taguchi Optimization Process to Statistically Investigate the Mechanical Properties of Composite Materials

  • ORIGINAL CONTRIBUTION
  • Published:
Journal of The Institution of Engineers (India): Series D Aims and scope Submit manuscript

Abstract

To acquire optimum proportioning of composite mixtures by applying information generated from a statistically designed research initiative, in which a sequential statistical strategy is included. The outlined strategy’s efficacy in refining the structure of composite blends is demonstrated using a usual scenario whereby experimental combinations have been investigated using a full factorial practice containing 3 elements then its four intensities (43). A complete set of mixtures of composites have been studied by adjusting the quantities of essential parameters influencing the compressive strength and split tensile strength, specifically, moisture-to-composite ratio (0.36, 0.38, 0.40, and 0.42), metakaolin to composite material content (10%, 15%, 20%, and 25%), and slag aggregate to fine aggregate content (10%, 20%, 30%, and 40%). The outcome of the experiment was employed for analysis of variance (ANOVA) to establish the regression model of compressive strength and tensile strength at 28 days and 90 days, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of Data and Materials

Not applicable.

References

  1. C.R. Gagg, Cement and concrete as an engineering material: an historic appraisal and case study analysis. Eng. Fail. Anal. 40, 114–140 (2014). https://doi.org/10.1016/j.engfailanal.2014.02.004

    Article  Google Scholar 

  2. V. Shobeiri, B. Bennett, T. Xie, P. Visintin, A comprehensive assessment of the global warming potential of geopolymer concrete. J. Clean. Prod. 15, 297 (2021). https://doi.org/10.1016/j.jclepro.2021.126669

    Article  CAS  Google Scholar 

  3. M. Aichouni, N.A. Messaoudene, M. Touahmia, A. Al-Ghonamy, Statistical analysis of concrete strength variability for quality assessment: case study of a Saudi construction project. Int. J. Adv. Appl. Sci. 4(7), 101–109 (2017)

    Article  Google Scholar 

  4. K.N. Ballantyne, R.A. van Oorschot, R.J. Mitchell, Reduce optimisation time and effort: Taguchi experimental design methods. Forensic Sci. Int. Genet. Suppl. Ser. 1, 7–8 (2008)

    Article  Google Scholar 

  5. P. Goltermann, V. Hohansen, L. Palbol, Packing of aggregates: an alternative tool to determine the optimal aggregate mix. ACI Mater. J. 94(5), 435–443 (1997)

    Google Scholar 

  6. G. Shakhmenko, J. Birsh, Concrete mix design and optimization, in Proceedings of the 2nd International Symposium in Civil Engineering, pp. 1–8, Budapest, Hungary, 1998.

  7. M. Glavind, C. Munch-Petersen, Green concrete in Denmark. Struct. Concr. 1(1), 1–6 (2000)

    Article  Google Scholar 

  8. V.K. Senthil, S. Manu, Particle packing theories and their application in concrete mixture proportioning: a review. Indian Concrete J. 77(9), 1324–1331 (2003)

    Google Scholar 

  9. H. He, P. Stroeven, M. Stroeven, L.J. Sluys, Optimization of particle packing by analytical and computer simulation approaches. Comput. Concr. 9(2), 119–131 (2012)

    Article  Google Scholar 

  10. I.-C. Yeh, Computer-aided design for optimum concrete mixtures. Cement Concr. Compos. 29(3), 193–202 (2007)

    Article  CAS  Google Scholar 

  11. J. Kasperkiewicz, Optimization of concrete mix using a spreadsheet package. ACI Mater. J. 91(6), 551–559 (1994)

    CAS  Google Scholar 

  12. K.A. Soudki, E.F. El-Salakawy, N.B. Elkum, Full factorial of optimization of concrete mix design for hot climates. J. Mater. Civ. Eng. 13(6), 427–433 (2001)

    Article  Google Scholar 

  13. M. J. Simon, Concrete mixture optimization using statistical methods, Final Report FHWA-RD-03–060, Infrastructure Research and Development, Federal Highway Administration, Georgetown Pike McLean, Va, USA, 2003.

  14. A. Ghezal, K.H. Khayat, Optimizing self-consolidating concrete with limestone filler by using statistical factorial design methods. ACI Mater. J. 99(3), 264–272 (2002)

    CAS  Google Scholar 

  15. R. Patel, K.M.A. Hossain, M. Shehata, N. Bouzoubaa, M. Lachemi, Development of statistical models for mixture design of high-volume fly ash self-consolidating concrete. ACI Mater. J. 101(4), 294–302 (2004)

    CAS  Google Scholar 

  16. M. Muthukumar, D. Mohan, Optimization of mechanical properties of polymer concrete and mix design recommendation based on design of experiments. J. Appl. Polym. Sci. 94(3), 1107–1116 (2004)

    Article  CAS  Google Scholar 

  17. L. Xiaoyong, M. Wendi, Optimization for mix design of high-performance concrete using orthogonal test. Commun. Comput. Inf. Sci. 232(2), 364–372 (2011)

    Google Scholar 

  18. M. Sonebi, M.T. Bassuoni, Investigating the effect of mixture design parameters on pervious concrete by statistical modeling. Constr. Build. Mater. 38, 147–154 (2013)

    Article  Google Scholar 

  19. G.E.P. Box, J.S. Hunter, W.G. Hunter, Statistics for Experimenters: Design, Innovation, and Discovery (Wiley, Hoboken, NJ, 2005)

    Google Scholar 

  20. L.B. Barrentine, An Introduction to Design of Experiments: A Simplified Approach (ASQ Quality Press, Milwaukee, 1999)

    Google Scholar 

  21. D. Montgomery, Design and Analysis of Experiments, 9th edn. (Wiley, Hoboken, NJ, 2017)

    Google Scholar 

  22. M. Cavazzuti, Optimization Methods (Springer, Berlin/Heidelberg, 2013)

    Book  Google Scholar 

  23. Z.R. Lazic, Design of Experiments in Chemical Engineering (WILEYVCH, Weinheim, 2004)

    Book  Google Scholar 

  24. G. Taguchi, S. Chowdhury, Y. Wu, TAGUCHI’S Quality Engineering Handbook (Wiley, New Jersey, 2005)

    Google Scholar 

  25. T. Dagdevir, V. Ozceyhan, Optimization of process parameters in terms of stabilization and thermal conductivity on water based TiO2 nanofluid preparation by using Taguchi method and Grey relation analysis. Int Commun Heat Mass Transf. 1, 120 (2021). https://doi.org/10.1016/j.icheatmasstransfer.2020.105047

    Article  CAS  Google Scholar 

  26. N. Bradley, Response Surface Methodology (Indiana University South Bend, South Bend, IN, 2009)

    Google Scholar 

  27. W. Ferdous, A. Manalo, T. Aravinthan, Bond behaviour of composite sandwich panel and epoxy polymer matrix: Taguchi design of experiments and theoretical predictions. Constr. Build. Mater. 145, 76–87 (2017). https://doi.org/10.1016/j.conbuildmat.2017.03.244

    Article  CAS  Google Scholar 

  28. A.E. Taiwo, T.N. Madzimbamuto, T.V. Ojumu, Optimization of process variables for acetoin production in a bioreactor using Taguchi orthogonal array design. Heliyon. 6(10), e05103 (2020). https://doi.org/10.1016/j.heliyon.2020.e05103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. S. Ahmad, S.A. Alghamdi, A statistical approach to optimizing concrete mixture design. Hindawi Publ. Corp. Sci. World J. (2014). https://doi.org/10.1155/2014/561539

    Article  Google Scholar 

  30. P.G. Mathews, Design of Experiments with MINITAB (ASQ, Milwaukee, WI, 2004)

    Google Scholar 

  31. S.F. Sawyer, Analysis of variance: the fundamental concepts. J. Man. Manip. Ther. 17, 27E-38E (2009)

    Article  Google Scholar 

  32. I. Bass, Six Sigma Statistics with Excel and Minitab, 1st edn. (Mcgraw-Hill Professional, New York, NY, 2007)

    Google Scholar 

  33. D.T. Larose, Data Mining Methods and Models, 1st edn. (Wiley-IEEE Press, Hoboken, NJ, 2006)

    Google Scholar 

  34. A.K. Srivastava, V.K. Srivastava, A. Ullah, The coefficient of determination and its adjusted version in linear regression models. Econom. Rev. 14, 229–240 (1995)

    Article  MathSciNet  Google Scholar 

  35. A. Akossou, R. Palm, Impact of data structure on the estimators R-square and adjusted R-square in linear regression. Int. J. Math. Comput. 20, 84–93 (2013)

    Google Scholar 

  36. F.H. Anwar, H. El-Hassan, M. Hamouda, A. El-Mir, S. Mohammed, K.H. Mo, optimization of pervious geopolymer concrete using TOPSIS-based Taguchi method. Sustainability 14, 8767 (2022). https://doi.org/10.3390/su14148767

    Article  CAS  Google Scholar 

  37. V. Lakkannavar, K.B. Yogesha, C.D. Prasad, M. Mruthunjaya, R. Suresh, A review on tribological and corrosion behaviour of thermal spray coatings. J. Inst. Eng. India Ser. D (2024). https://doi.org/10.1007/s40033-024-00636-5

    Article  Google Scholar 

  38. N. Praveen, U.S. Mallik, A.G. Shivasiddaramaiah, R. Hosalli, C. DurgaPrasad, S. Bavan, Machinability study of Cu-Al-Mn shape memory alloys using Taguchi method. J. Inst. Eng. India Series D (2024). https://doi.org/10.1007/s40033-023-00629-w

    Article  Google Scholar 

  39. N.G. Siddeshkumar, R. Suresh, C. DurgaPrasad, L. Shivaram, N.H. Siddalingaswamy, Evolution of the surface quality and tool wear in the high speed turning of Al2219/n-B4C/MoS2 metal matrix composites. Int. J. Cast Metals Res. (2023). https://doi.org/10.1080/13640461.2023.2285177

    Article  Google Scholar 

  40. N. Praveen, U.S. Mallik, A.G. Shivasiddaramaiah, N. Nagabhushana, C.D. Prasad, S. Kollur, Effect of CNC end milling parameters on Cu–Al–Mn ternary shape memory alloys using Taguchi method. J. Inst. Eng. India Ser. D (2023). https://doi.org/10.1007/s40033-023-00579-3

    Article  Google Scholar 

  41. C.D. Prasad, S. Kollur, C.R. Aprameya, T.V. Chandramouli, T. Jagadeesha, B.N. Prashanth, Investigations on tribological and microstructure characteristics of WC-12Co/FeNiCrMo composite coating by HVOF process. JOM 76(1), 186–195 (2024)

    Article  CAS  ADS  Google Scholar 

  42. S. Gotagunaki, V.S. Mudakappanavar, R. Suresh, C.D. Prasad, Studies on the mechanical properties and wear behavior of an AZ91D magnesium metal matrix composite utilizing the stir casting method. Metallogr. Microstruct. Anal. 12(6), 986–998 (2023)

    Article  Google Scholar 

  43. C. Manjunatha, T.N. Sreenivasa, P. Sanjay, C. DurgaPrasad, Optimization of friction stir welding parameters to enhance weld nugget hardness in AA6061-B4C composite material. J. Inst. Eng. India Ser. D (2023). https://doi.org/10.1007/s40033-023-00562-y

    Article  Google Scholar 

  44. C. Durga Prasad, S. Kollur, M. Nusrathulla, G. Satheesh Babu, M.B. Hanamantraygouda, B.N. Prashanth, N. Nagabhushana, Characterisation and wear behaviour of SiC reinforced FeNiCrMo composite coating by HVOF process. Trans. IMF (2023). https://doi.org/10.1080/00202967.2023.2246259

    Article  Google Scholar 

  45. M. Arunadevi, M. Rani, R. Sibinraj, M.K. Chandru, C.D. Prasad, Comparison of k-nearest neighbor & artificial neural network prediction in the mechanical properties of Aluminum alloys. Mater. Today: Proc. (2023). https://doi.org/10.1016/j.matpr.2023.09.111

    Article  Google Scholar 

  46. G.S. Kulkarni, N.G. Siddeshkumar, C.D. Prasad, L. Shankar, R. Suresh, Drilling of GFRP with liquid silicon rubber reinforced with fine aluminium powder on hole surface quality and tool wear using DOE. J. Bio- Tribo-Corros. 9(3), 53 (2023). https://doi.org/10.1007/s40735-023-00771-8

    Article  Google Scholar 

  47. N. Praveen, U.S. Mallik, A.G. Shivasiddaramaih, R. Suresh, C. Durga Prasad, L. Shivaramu, Synthesis and wire EDM characteristics of Cu–Al–Mn ternary shape memory alloys using Taguchi method. J. Inst. Eng. India Ser. D (2023). https://doi.org/10.1007/s40033-023-00501-x

    Article  Google Scholar 

  48. G. Madhu Sudana Reddy, C. Durga Prasad, S. Kollur, A. Lakshmikanthan, R. Suresh Kumar, C.R. Aprameya, Investigation of high-temperature erosion behavior of NiCrAlY/TiO2 plasma coatings on titanium substrate. JOM (2023). https://doi.org/10.1007/s11837-023-05894-4

    Article  Google Scholar 

  49. N. Praveen, U.S. Mallik, A.G. Shivasiddaramaih, R. Suresh, L. Shivaramu, Design and analysis of shape memory alloys using optimization techniques. Adv. Mater. Process. Technol. (2023). https://doi.org/10.1080/2374068X.2023.2208021

    Article  Google Scholar 

  50. G.M.S. Reddy, C.D. Prasad, P. Patil, G. Shetty, N. Kakur, M.R. Ramesh, High temperature erosion performance of NiCrAlY/Cr2O3/YSZ plasma spray coatings. Trans. IMF (2023). https://doi.org/10.1080/00202967.2023.2208899

    Article  Google Scholar 

  51. C.D. Prasad, M.S. Lingappa, S. Joladarashi, M.R. Ramesh, B. Sachin, Characterization and sliding wear behavior of CoMoCrSi+ Flyash composite cladding processed by microwave irradiation. Mater. Today Proc. 46, 2387–2391 (2021). https://doi.org/10.1007/s12633-020-00398-1

    Article  CAS  Google Scholar 

  52. H. Sharanabasava, C.D. Prasad, M.R. Ramesh, Characterization and wear behavior of NiCrMoSiC microwave cladding. J. Mater. Eng. Performance 33(2), 763–775 (2024). https://doi.org/10.1007/s11665-023-07998-z

    Article  CAS  Google Scholar 

  53. G.M.S. Reddy, C.D. Prasad, P. Patil, G.K. Shetty, N. Kakur, M.R. Ramesh, Investigation of the effect of NiCrAlY/Cr2O3/YSZ plasma coatings on erosion performance of MDN 420 steel at high temperature. Int. J. Surface Sci. Eng. 17(3), 180–194 (2023)

    Article  CAS  Google Scholar 

  54. C.D. Prasad, A. Jerri, M.R. Ramesh, Characterization and sliding wear behavior of iron-based metallic coating deposited by HVOF process on low-carbon steel substrate. J. Bio- Tribo-Corros. 6, 1–9 (2020). https://doi.org/10.1007/s40735-020-00366-7

    Article  Google Scholar 

  55. H. Sharanabasava, C.D. Prasad, M.R. Ramesh, Effect of Mo-and SiC-reinforced NiCr microwave cladding on microstructure, mechanical and wear properties. J. Inst. Eng. India Ser. D (2023). https://doi.org/10.1007/s40033-022-00445-8

    Article  Google Scholar 

  56. G.M.S. Reddy, C.D. Prasad, G. Shetty, M.R. Ramesh, T.N. Rao, P. Patil, High-temperature oxidation behavior of plasma-sprayed NiCrAlY/TiO2 and NiCrAlY/Cr2O3/YSZ coatings on titanium alloy. Weld. World 66(6), 1069–1079 (2022). https://doi.org/10.1007/s40194-022-01268-7

    Article  CAS  Google Scholar 

  57. T. Naik, M. Mathapati, C.D. Prasad, H.S. Nithin, M.R. Ramesh, (2022) Effect of laser post-treatment on microstructural and sliding wear behavior of Hvof-Sprayed NiCrC and NiCrSi coatings. Surface Rev. Lett. 29(1), 225000 (2022)

    Article  Google Scholar 

  58. C.D. Prasad, S. Joladarashi, M.R. Ramesh, M.S. Srinath, B.H. Channabasappa, Effect of microwave heating on microstructure and elevated temperature adhesive wear behavior of HVOF deposited CoMoCrSi-Cr3C2 coating. Surface Coat. Technol. 374, 291–304 (2019). https://doi.org/10.1016/j.surfcoat.2019.05.056

    Article  CAS  Google Scholar 

  59. G. Madhu Sudana Reddy, C. Durga Prasad, G. Shetty, M.R. Ramesh, T.N. Rao, P. Patil, High temperature oxidation studies of plasma sprayed NiCrAlY/TiO2 & NiCrAlY /Cr2O3/YSZ cermet composite coatings on MDN-420 special steel alloy. Metallogr. Microstruct. Anal. 10, 642–651 (2021). https://doi.org/10.1007/s13632-021-00784-0

    Article  CAS  Google Scholar 

  60. M. Mathapati, K. Amate, C.D. Prasad, M.L. Jayavardhana, T.H. Raju, A review on fly ash utilization. Mater. Today Proc. 50, 1535–1540 (2022). https://doi.org/10.1016/j.matpr.2021.09.106

    Article  CAS  Google Scholar 

  61. C. Durga Prasad, S. Joladarashi, M.R. Ramesh, Comparative investigation of HVOF and flame sprayed CoMoCrSi coating. Am. Inst. Phys. 2247, 050004 (2020)

    Google Scholar 

  62. R. Dinesh, R. Raykar, S. Lingappa, C. Durgaprasad, Feasibility study on MoCoCrSi/WC-Co cladding developed on austenitic stainless steel using microwave hybrid heating. J. Mines Metals Fuels 69, 260–264 (2021)

    Article  Google Scholar 

  63. C.D. Prasad, M.S. Lingappa, S. Joladarashi, M.R. Ramesh, B. Sachin, Characterization and sliding wear behavior of CoMoCrSi+Flyash composite cladding processed by microwave irradiation. Mater. Today Proc. 46, 2387–2391 (2021). https://doi.org/10.1016/j.matpr.2021.01.156

    Article  CAS  Google Scholar 

  64. G. Madhu, K.M. Mrityunjaya Swamy, D.A. Kumar, C.D. Prasad, U. Harish, Evaluation of hot corrosion behavior of HVOF thermally sprayed Cr3C2 -35NiCr coating on SS 304 boiler tube steel. Am. Inst. Phys. 2316, 030014 (2021)

    CAS  Google Scholar 

  65. M. Reddy, C.D. Prasad, P. Patil, M.R. Ramesh, N. Rao, Hot corrosion behavior of plasma-sprayed NiCrAlY/TiO2 and NiCrAlY/Cr2O3/YSZ cermets coatings on alloy steel. Surf. Interfaces 22, 100810 (2021). https://doi.org/10.1016/j.surfin.2020.100810

    Article  CAS  Google Scholar 

  66. C. Durga Prasad, S. Joladarashi, M.R. Ramesh, M.S. Srinath, Microstructure and tribological resistance of flame sprayed CoMoCrSi/WC-CrC-Ni and CoMoCrSi/WC-12Co composite coatings remelted by microwave hybrid heating. J. Bio Tribo-Corros. 6, 124 (2020). https://doi.org/10.1007/s40735-020-00421-3

    Article  Google Scholar 

  67. C.D. Prasad, S. Joladarashi, M.R. Ramesh, M.S. Srinath, B.H. Channabasappa, Development and sliding wear behavior of Co-Mo-Cr-Si cladding through microwave heating. Silicon 11, 2975–2986 (2019). https://doi.org/10.1007/s12633-019-0084-5

    Article  CAS  Google Scholar 

  68. C. Durga Prasad, S. Joladarashi, M.R. Ramesh, A. Sarkar, High temperature gradient cobalt based clad developed using microwave hybrid heating. Am. Inst. Phys. (2018). https://doi.org/10.1063/1.5029687

    Article  Google Scholar 

  69. K.G. Girisha, K.S. Rao, C.D. Prasad, Slurry erosion resistance of martenistic stainless steel with plasma sprayed Al2O3-40% TiO2 coatings. Mater. Today Proc. 5(2), 7388–7393 (2018). https://doi.org/10.1016/j.matpr.2017.11.409

    Article  CAS  Google Scholar 

  70. K.G. Girisha, C. Durga Prasad, K.C. Anil, K.V. Sreenivas Rao, Dry sliding wear behaviour of Al2O3 coatings for AISI 410 grade stainless steel. Appl. Mech. Mater. 766, 585–589 (2015). https://doi.org/10.4028/www.scientific.net/AMM.766-767.585

    Article  Google Scholar 

  71. K.G. Girisha, R. Rakesh, C. DurgaPrasad, K.V. Sreenivas Rao, Development of corrosion resistance coating for AISI 410 grade steel. Appl. Mech. Mater. 813, 135–139 (2015). https://doi.org/10.4028/www.scientific.net/AMM.813-814.135

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Manjula.

Ethics declarations

Competing Interests

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manjula, K., Narendra, B.K. An Analysis Using the Taguchi Optimization Process to Statistically Investigate the Mechanical Properties of Composite Materials. J. Inst. Eng. India Ser. D (2024). https://doi.org/10.1007/s40033-024-00655-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40033-024-00655-2

Keywords

Navigation